Análisis de la deserción en las carreras universitarias de UCSE
Construcción de modelos predictivos utilizando técnicas de aprendizaje automático
Resumen
El presente trabajo, que forma parte de un proyecto de investigación y desarrollo de la Universidad Católica de Santiago del Estero (UCSE), aborda la problemática de la deserción de alumnos en las carreras de dicha universidad, generando modelos que permitan identificar a aquellos estudiantes con altas probabilidades de desertar. El objetivo es prever estos casos y actuar ante estas circunstancias, permitiendo a las autoridades definir estrategias para reducir la deserción. Para alcanzar estos objetivos, se aplicaron técnicas de minería de datos y machine learning centradas en el aprendizaje automático, las cuales permitieron generar modelos predictivos para discernir y predecir de manera precisa si un estudiante abandonará una determinada carrera. Los modelos utilizados fueron KNeighbors, Random Forest, Gradient Boosting y Multilayer Perceptron, utilizando como fuente de datos un dataset generado a partir de la información proporcionada por el Sistema de Gestión Académica de la Universidad Católica de Santiago del Estero.