ASSE, Simposio Argentino de Ingenieria de Software

Performance Evaluation of MQTT Broker Servers Deployed in
the Cloud

Fernando Pazos

Technology and Administration Department. National University of Avellaneda.
Mario Bravo 1460, Pifieyro, B1868, Buenos Aires, Argentina.
fapazos@undav.edu.ar

Abstract. Communication between devices on a network requires the use of protocols. On
internet there are well known protocols that can be used both in the architecture of a server with
multiple clients as well as in a machine to machine (M2M) communication. In Internet of Things
(IoT) applications, network communication can be supervised by a server denoted as broker, and
the most widely used application layer protocol for this purpose is MQTT (Message-Queuing
Telemetry Transport). This paper compares the performance of eight publicly available MQTT
brokers deployed in the cloud in three experiments under different stress conditions. The goal
is to choose the most suitable broker to be used in the communication between a Cubesat-type
nanosatellite and the land terminal.

Keywords: Internet of Things - MQTT protocol - MQTT brokers

1 Introduction

The present work is part of a larger project implemented by a consortium of Argentine universities
that aims to put a nanosatellite into orbit. The objective is to promote a space laboratory for the
provision of Internet of Things (IoT) services. In particular, the National University of Avellaneda
is responsible for the study and recommendation of the most suitable On-Board Computer (OBC)
for use in IoT, as well as the study of all the relevant aspects about the communication between the
nanosatellite and the land terminal (see [13] for details).

A crucial issue to be resolved in order to put a nanosatellite into orbit is to establish reliable com-
munication with the Earth terminal. An on-board computer (OBC) must store information collected
by the sensors installed on the satellite and send it whenever requested by a client. As the connection
time is only a few minutes per day according to the orbital period, the OBC must store all the data
collected daily and send it securely during the connection time. This issuance is carried out via the
internet [13].

There exist several architectures for connecting an IoT device with another device, either client or
server. In the present project a machine-to-machine (M2M) communication between the satellite and
the land terminal, which must receive and store the data sent for further analysis, must be implemented.

In ToT applications based on the TCP/IP model, some of the most commonly used application
layer protocols include CoAP, AMQP, XMPP and HTTP, however, in M2M communication the most
widely used is MQTT (Message-Queuing Telemetry Transport) [18, 2]. It is based on the asynchronous
publishing/subscribing topology of small messages, tipically of a few bytes, which makes this protocol
suitable for connecting remote devices. It can be implemented with an extremely lightweight code,
requires little bandwidth and is very energy efficient, so it can be deployed on microcontrollers and
devices having limited processing capabilities and memory [21]. This protocol is widely used in a
number of industries such as automotive, oil and gas among many others (see details in [18, 2,4, 21]).

1.1 The MQTT protocol

The implementation of a communication network using MQTT requires the control and manage-
ment by a back-end server on the internet. This server is denoted as broker. The broker is responsible

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Pagina 6

ASSE, Simposio Argentino de Ingenieria de Software

for receiving and delivering messages sent by the clients. The architecture of the network managed by
the broker is a star configuration. The clients connected to the broker play subscriber and publisher
roles. The publishers send messages on a topic head to the broker, which delivers them to the sub-
scribers that have previously subscribed to that topic [21]. Of course, communication is bidirectional,
so the clients that publish in a topic can be subscribed to other topics, thus receiving the messages
published by other clients.

The message format is ’topic’:’payload’, where

— Topic: “key” or identification of the message published. The topic name is an UTF-8 encoded string
used to deliver the message to the clients subscribed to it.
— Payload: string containing the message itself formatted as an array of characters.

The topic can have subtopics (separated by a slash) in a hierarchical structure. Subscribers can
subscribe to an individual topic or to a set of topic using “wildcards” [4].

Fig. 1 shows a simplified star scheme of the publisher /subscriber model, where a temperature sensor
publishes the measured data with the topic “temperature”; two clients subscribed to this topic receive
the message.

MQTT broker /' }(
MATT client Subscribe to topic: “temperature” /
-—— /

% MOTT client

Subscribe to topic: “temperature”

-—

Fig.1: Example of the publisher/subscriber configuration

MQTT runs on a TCP/IP transport layer socket using ports 1883 and 8883 for non-encrypted and
encrypted communication, respectively.

MQTT supports three levels of quality of service (QoS) to ensure message transport realibility
described as follows [4, 11].

— QoS 0 (At most once, or “fire and forget”): Messages are sent at most once and it does not provide
guarantee delivery of a message. The sender sends the message and does not store it. The receiver
does not acknowledge its receiving. Messages can be lost; there is no retransmission.

— QoS 1 (At least once): Messages are sent at least once. The sender sends a message and expects to
receive an acknowledgment from the receiver. If the receiver does not acknowledge receipt, or the
message is lost, the sender resends the message until acknowledgment is obtained.

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Pagina 7

ASSE, Simposio Argentino de Ingenieria de Software

— QoS 2 (Exactly once): Messages are sent exactly once by using 4-way handshaking. This is the
slowest of all the levels and increases the communication load but is the best option when message
duplication is not allowed.

Other parameters to be set when using the MQTT protocol include

keep alive interval: maximum time for which a client must publish a message or to send a “ping”

request to the broker in order not to be disconnected from the network.

retain-flag: indicates whether the broker should store a message for delivery to clients that later

subscribe to that topic.

— SSL certificate: indicates whether the communication is encrypted using the TLS (Transport Layer
Security) protocol.

— last will and testament: topic and payload set by a client when connected. The payload is delivered

to the clients subscribed to this topic when the connection with the sender is lost.

More information about the MQTT protocol can be found in [4,2, 16,21, 22].

1.2 MQTT Brokers

There exists a number of publicly available MQTT brokers with very diverse configurations and
features. In [3] some of them are listed.

Some brokers require registration and credentials (username and password) must be provided for
connection. Some of them are deployed in the cloud, whereas others require the installation of a soft-
ware on a local server which will be used as broker to manage the communication between clients.
Some of them present a dashboard on a web page where all the messages received and delivered by
the broker are printed. Some brokers allow the clients to establish encrypted communication with an
SSL/TLS certificate, whereas others do not.

There exist many studies comparing the efficiency of the MQTT protocol in IoT applications against
that presented by other protocols. Also, many works compare the performance of several MQTT brokers
under different conditions (see [14-16] and references therein).

In [10] seven brokers are analyzed from a security point of view by performing a DOS attack and
information gathering techniques on the broker, and comparing the vulnerability of each one.

In [11] the performances of wired and wireless networks using the broker mosquitto are analyzed by
measuring the end-to-end delays and message loss as a function of the QoS and the size of the payload.

In [16] the performances of six brokers (mosquitto, active-MQ, hivemq, bevywise, verneMQ, and
emqx) are evaluated in terms of message processing rates. The performances are quantified in terms of
latency, scalability and availability (see definitions in [16, s. 2.4]).

In [14] two experiments are carried out. In the first one a Raspberry Pi board publishes analogical
data and a local computer receives the information. The performances of three MQTT brokers deployed
in the cloud are compared by measuring the mean latency. In the second test five MQTT brokers are
deployed in a local computer wich also plays the role of subscriber. Another local computer is used as
publisher. The performances of the brokers are compared by measuring the mean latency as a function
of the QoS and the size of the payload.

The present study aims to test the performance of the services offered by some brokers, such as the
transmission reliability and the response time, in order to determine the most suitable to be applied
in the communication between a nanosatellite and the land terminal.

A total of twenty brokers available on internet were tested, but as they present very different
configurations and in order to test under the same conditions, we choose those that meet the follow-
ing criteria: being free, being deployed in the cloud, and allowing M2M communication without the
mandatory use of a dashboard on a web page.

The brokers chosen were:

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Pagina 8

ASSE, Simposio Argentino de Ingenieria de Software

— saas.theakiro.com [1]

— mgqtt.flespi.io [6]

— test.mosquitto.org [17]

— broker.hivemq.org [8]

— mgqtt.fluux.io 7]

— broker.emgx.io [5]

— broker.mqttdashboard.com [19]
— ioticos.org [9]

Some of these brokers are scalables, which means that they can increase the capacity of the service
with the increase in load. The strategies for expanding the service are clustering, or the ability to share
the service across several servers or cores, and bridging, where the messages are delivered to other
brokers when the processing time exceeds a maximum limit [4,16]. For example hivemq and emgx are
scalables, whereas mosquitto is not.

In this work, the results obtained from three experiments carried out under different conditions are
presented in order to quantify the performance of the eight MQTT brokers chosen. The performance
evaluation considers the latency (time elapsed between the delivery of a message and its reception)
and the reliability (ability to deliver all received messages, without message loss). The goal is to
determine the most suitable broker to be used in the communication between a nanosatellite and the
land terminal.

The main contribution of the present work is to compare the performance of some brokers not
mentioned in the references cited (such as ioticos and akiro) making the appropriate tests for the
project for which the selected broker will be used.

2 Experimental results

In this section, the results of three experiments carried out in order to quantify the performance of
the brokers are presented.

The experiments used a WiFi internet connection of 5 GHz, with ping of 53ms and 54mbps and
78mbps of download/upload speed, respectively.

In all the test performed, a local computer executes a VCL application specially developed for
these tests in the RAD Studio 10.2 IDE. The MQTT protocol has been provided using TMS MQTT
components [22] in the script. Fig. 2 shows the screen of the application.

2.1 First test: jitter evaluation

The first test aims to reproduce the project framework, i.e. an IoT device sending data to a land
terminal. The IoT board publishes analogical temperature values on a topic head and a local computer
is subscribed to this topic. The IoT device publishes 100 strings at predetermined intervals of 100ms,
500ms, and 1000ms, respectively.

The temperature sensor used is the TMP36. This sensor is able to measure temperatures between
—40°C and 125°C and has an output scale factor of 10mV/°C.

A NodeMCU v.1 board will be used as IoT device. It is based on the ESP8266 microcontroller,
which allows WiFi connections at 2.4 GHz with 802.11 b/g/n protocol. Its A/D converter supports
input signals between 0V and 3.3V and has a resolution of 10 bits.

The subscriber is a Dell Inspiron 5557 computer with processor Intel(R) Core(TM) i7-6500U CPU
@ 2.50GHz, 8GB of RAM memory, and a 64 bits Windows 10 Pro as operating system.

Fig. 3 shows the layout of the system used in this test.

The MQTT protocol on the IoT board is provided by the library Pubsubclient.h 2.8 [20]. This is
very simple to use. Clients can publish QoS 0 messages and can subscribe at QoS 0 or QoS 1. The
maximum message size, including the header is 256 bytes (although it is configurable). It supports last

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Pagina 9

ASSE, Simposio Argentino de Ingenieria de Software

@ MQTT Broker test
Save Data About

Broker: | test.mosquitto.org

Port: ss1: O .

Credentials Connection status

User name:

Password:
Start test 1 Start test 2 Start test 3

QoS: -U
Connec Disconnect
transmission

period [ms]

Fig. 2: Application executed by the computer in the tests performed

MQTT BROKER

temperature sensor
TVP36

loT board i
MQTT client

Fig. 3: System layout in the first and second tests

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Pagina 10

ASSE, Simposio Argentino de Ingenieria de Software

will and testament, and allows to set the retain flag and to configure the keep alive interval (which is
15 seconds by default). In this first test we use QoS 0, port number 1883 and no testament.

In this experiment, the computer first publishes a message indicating the required transmission
interval (100ms, 500ms, or 1000ms) followed by a start command. Once the ToT board receives these
messages, it starts to publish 100 temperature measurements at the specified intervals.

Due to the asynchrony between the internal clocks of the clients, it is not possible to obtain an
accurate latency value. Instead, the time between the messages received (denoted as jitter in [12]) is
measured. This is not affected by the asynchrony between the clients, since we take as the reference
clock only one of them, namely the subscriber client clock [12].

Table 1 shows the results obtained in this test.

Table 1: Test 1. Mean time between messages reception and standard deviation for each transmission interval
[ms]

time interval [ms] 1000 500 100
mean [std |mean [std [mean[std

saas.theakiro.com 1000.8 |185.87(500.99(26.52(392.08| 55.57
mqtt.flespi.io 1001.2 |188.47|501.12{18.02|102.22(119.45
test.mosquitto.org 1001.1 | 18.50 [501.01{15.62(100.89| 110.7
broker.hivemq.org 1000.9 | 13.84 {500.97(10.90({103.11|116.95
mqtt.fluux.io 1001 | 11.35(500.89|13.03|101.43| 77.34
broker.emgx.io 1001.11| 7.79 | 500.9 {10.74]|190.41|178.79
broker.mqttdashboard.com|| 1000.9 | 10.53 {500.97|15.74|102.19(114.86
ioticos.org 1001.5 | 90.12 |500.25|67.84| 101.4 | 48.06

In this test there was no message loss. Regularity in the message reception indicates the broker’s
ability to handle messages at these intervals, which in turn indicates the reliability of the communication
between the board and the local client. With the smallest transmission interval, 100ms, some brokers
like mqttdashboard seem to block sometimes, so they present large standard deviations. The broker
fluux presents the smallest standard deviation on average in the three intervals tested.

2.2 Second test: mean latency between an IoT board and a client

In the second test the latency presented by the brokers will be measured. With this purpose, the
computer publishes 100 short messages at predetermined intervals on a topic head. The IoT board
receives the messages and simply republishes them on another topic head, which the computer is
subscribed to. Latency is measured as the time elapsed from the publication of the message to its
reception by the computer. Note that asynchrony between both of the clients is irrelevant in this
context.

The devices and the system layout are the same that those used in the first test and shown in Fig.

The publication intervals also are 100ms, 500ms, and 1000ms. The test will be carried out as a
function of the QoS with which the computer will publish and receive the messages, while the IoT
board will continue to use QoS 0.

The payload of the messages are

message n. #n°
so they have from 12 to 14 characters, depending on the number of digits of the message number. The

other parameters are the same that those used in the former test.

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Pagina 11

ASSE, Simposio Argentino de Ingenieria de Software

Table 2 shows the results obtained in this test.

Table 2: Test2. Mean latency (top rows) and standard deviation (bottom rows) for each publication interval
and each QoS [ms]. X: system collapse.

QoS QoS 0 QoS 1 QoS 2
time interval [ms] 1000 [500 | 100 | 1000 | 500 | 100 | 1000 | 500 | 100

37544 74698 (105100| 35569 | 71290 | 96813 | 31957 | 66659 | 94927

18084 |30955 | 27985 | 17874 (27611 | 38708 | 17317 | 32379 | 38810
552.78 |552.73|1242.41547.15|558.05|8474.5/612.07| 1601.1 | 11902

15.18 24 |305.15|18.67| 16 | 4802 |256.45| 625.11 | 7460

544.06 |552.62|1424.4507.07(685.63| 7845 | 778.8 | 932.99

test.mosquitto.org 186.1 [173.75(605.12| 15.27 |455.49| 4419 | 102 |113.71| =

501.74 | 508.3 | 1177.21512.41|530.39|7178.4|518.26| 550.04 |1067.5

16.65 | 15.01 |284.01| 19.09 | 15.57 |4084.6| 23.57 | 238.36 [6523.8
383.78 |373.27|974.18 |368.46|380.05| 3989 |398.86| 357.17 |7217.8

143.35 | 18.49 |272.83| 19.24 | 26.94 | 2120 |180.31| 24.61 [4278.9
568.87 |575.67| 11005 [579.75]562.49| 8392 |568.41| 1858 |11734

21.38 | 14.20 | 14513 | 19.12 | 13.98 |4880.9| 14.19 | 762.25 | 7284
569.57 |579.35|1128.8| 559 [594.69(8103.3|568.12| 845.04 | 11029

124.70S] 29.83 | 291 |23.25|221.3 |4564.4| 15.1 | 186.18 |6845.1
393.35 |410.21| 762.9 | 218.6 | 173.2 [932.83]126.66| 269.68 | 751.1

898.75 | 794.4 |472.64|307.56|204.60(661.73| 17.27 |376.139(|490.06

saas.theakiro.com

mqtt.flespi.io

broker.hivemq.org

mqtt.fluux.io

broker.emgx.io

broker.mqttdashboard.com

ioticos.org

The broker akiro presented the largest end-to-end delays.

When the elapsed time is greater than the publication interval, it increases monotonically with the
message number because the messages accumulate in the queue waiting to be processed by the broker,
both when the computer sends the message to the IoT board and when the IoT board returns the
message back to the computer. For example, with the broker hivemq, QoS 1, T=100ms, the delays
between the messages 17 and 23 were 2371 2522 2686 2866 2986 3122 3255 [ms].

With QoS 2 and transmission interval equal to 100ms, the broker mosquitto collapsed.

Sometimes, some brokers temporarily block. For example, with the broker ioticos, QoS 0 and
T=500ms, the message 41 took 4487ms, a much greater value than the average presented by this
broker in this test (410.21ms).

Fig. 4 shows the delays presented by the brokers tested with interval equal to 500ms. The plots of
the broker akiro are not shown because its minimum elapsed times were 4883ms, 3558ms and 4592ms
for each QoS respectively. Note that with QoS 2, the brokers that cannot process the delivery of
messages in a time less than the transmission interval have monotonically incresing delays on average.

Fig. 5 shows the minimum, mean and maximum elapsed times presented by the brokers tested for
each transmission interval and each QoS used. Also here, the bars corresponding to the broker akiro
are not shown because its delays were greater than those plotted.

The broker ioticos, althought sometimes blocks, presents the smallest mean latency. The broker
fluux has more regularity presenting the smallest standar deviation on average.

2.3 Third test: mean latency between a client and itself

In this test the latency presented by the brokers will be measured independently of the speed of
response of the IoT board, which will not be used in this test. For that reason, the local computer will
be publisher and also subscriber, so it must subscribe the topic to which it publishes the messages.

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Pagina 12

ASSE, Simposio Argentino de Ingenieria de Software

Test 2. Elapsed time [ms] for each message sent by the brokers tested.
QoS 0, T=500ms

1000 I
akiro
900 flespi
mosquitto
800 hivemq 1
fluux
& 700 - emagx 4
I dashboard
g 600 ([ioticos
= «ﬁ AN
2 500 f VA
o
K]
@400 # A
300
20 W
100 | | | | | | | | |

10 20 30 40 50 60 70 80 90 100
number of message

Test 2. Elapsed time [ms] for each message sent by the brokers tested.
QoS 1, T=500ms

2000
akiro
1800 - flespi]
mosquitto
1600 hivemg 1
fluux
= 1400 - emgx b
I dashboard
‘v 1200 [ioticos B
E
3 1000 b
%)
5]
< 800
600 Rlstiaiiconsanses SN e
XZ=0AN
400 \‘V\-'\/\/V\/\/\’j\-/\/\/\/\"‘/\‘
200 b /-/\IY\—/\/\J \
A AA AL AN) L
40 50

10 20 30 60 70 80 90 100

number of message

Test 2. Elapsed time [ms] for each message sent by the brokers tested.
QoS 2, T=500ms

3000]
akiro
flespi
2500 mosquitto | -
hivemq
fluux
' 2000 eme 1
I dashboard
° ioticos
£
5 1500 1
@
7]
o
<
()
1000 1
500
90 100

number of message

Fig. 4: Elapsed times of tYlemesiangedanfidAlO i1 A3SEsedSHM 12456 4ve49650Pagnaid QoS 0 (top), QoS 1 (middle)
and QoS 2 (bottom)

ASSE, Simposio Argentino de Ingenieria de Software

Test 2. Maximum, minimum and mean values of the elapsed times [ms]
for each broker tested. T=1000ms

3000
& qoso
® qosi
2500 § Qos2
- | .
£ 2000 -
(0]
£
= 1500
=]
(]
%2}
o
<
© 1000
(]
(]
L [®
500
(] Q
%
0 ' = .
.Q >) & S+ 3 S)
,5(_{\ %ef,Q o\?& .&@ 5@\» Q@Q \Qo'é -6‘\00
&P N BN €
N 6’0‘
&
&

elapsed time [ms]

Test 2. Maximum, minimum and mean values of the elapsed times [ms]
for each broker tested. T=500ms

3000 [1
7 o
2500 $ Qost
& oos2
2000 -
@
(]
1500 -
1000 -
? (]
¢
L ¢ ¢ ¢
500 ¢
! ¢
ol ! L 1 ‘
.Q >) & S+ $ >)
,5(_{\ %Q?Q 0\}\@ .&@ 5@\» Q@Q \Qo'é lo,&o
& ~ X N
<& 6’0‘
&
&

Test 2. Maximum, minimum and mean values of the elapsed times [ms]

4 x10% for each broker tested. T=100ms
® qoso
35 $ oos:
® qos2
3l
%)
Eos5t
(]
£
= ol
o
Q
1%}
&15F
[
1k @ @ @ @]
0.5 l
L. & o & 35 & 3N
. >) & S+ 3 S)
,S(S‘ %anQ 0\}\@ .&@ 5@\» Q@Q \oo'é .o'&\°0
4 N ES §
<& 6’0‘
&
&

Fig. 5: Minimum, mean NMederiasidalas 52aiABQ +ASSEof ISSNN2452g490uPhginallh the second test with trans-
mission intervals of 1000ms (top), 500ms (middle) and 100ms (bottom) for each QoS tested

ASSE, Simposio Argentino de Ingenieria de Software

The latency will be measured as the end-to-end delay between the transmission and the reception of a
message. The measurements will be made as a function of the QoS. The transmission intervals will be
the same that those used in the two former tests. The payload also is the same that the used in the
second test, as well as the other parameters.

Table 3 shows the results of this test.

Table 3: Test3: Mean latency (top rows) and standard deviation (bottom rows) for each publication interval
and each QoS [ms]. X: system collapse. L.D.= lost data.

QoS QoS 0 QoS 1 QoS 2
time interval [ms] 1000[500 [100 1000[500 [100 1000[500 [100

1185.7(1397.7| 31035 [1194.8]11421|35168 |1174.4|14381 | 32598

51.05 |7292.8| 18185 [104.09| 6381 | 19027 | 63.23 | 7888 | 17927
290.77) 295.1 | 908.2 |321.63|292.71| 8474 (297.86| 1662 | 11741

12.17 | 53.90 | 288.87 | 14.23 | 13.31 | 4965 | 12.95 |774.46| 7332

277.85|287.93| 880.75 |286.56| 279 | 7642 [551.66| 1056

testmosquitto.org | 1o o5 | 13 | 98855 | 17.48 | 13.82 | 4439 | 17.79 |313.05]

313.02|308.89| 907.07 |294.93|302.69| 8758 |297.99|1703.4| 1178

14.37]12.32| 285.67 | 13 |13.66| 5109 | 11.76 |807.42| 7375
203.77|204.86| 748.03 [190.58|202.99|3935.5/213.16|224.95|8682.1

12.77 | 11.98 | 266.69 | 14.83 | 12.77| 2195 | 15.18 | 16 | 4865
301.2 1302.02| 917.81 | 321.2 |429.76| 7974 | 423.1 |549.15]/ 11038
broker.emqx.io 10.54 | 10.96 | 298.82 | 16.81 | 88.26 | 4666 | 86.43 |135.52| 6906
L.D.=15
309.68|297.29| 906.21 |302.88|312.35| 9050 [329.57| 1846 |12110

15.55 | 14.78 | 299.36 | 25.84 | 14.54 | 5279 | 20.14 |904.33| 7603
71.25 | 87.08 | 546.07 | 92.67 | 93.1 [542.79| 79.1 | 72.74 |540.75

10.82| 17.09 | 276.85 | 16.78 | 14.78 |277.88| 12.09 | 12.68 |276.23

saas.theakiro.com

mgqtt.flespi.io

broker.hivemg.org

mqtt.fluux.io

broker.mqttdashboard.com

ioticos.org

The results obtained in this test are not significantly different from those obtained in the second
test, except for the fact that the mean latencies are lower than those presented in the former test. It
was expectable, because in this test the messages are not sent to the IoT board, the path taken is from
the computer to the broker and back to the computer.

Here again the broker mosquitto collapsed when QoS 2 and transmission interval equal to 100ms
were used. The broker emgx lost 15 messages when QoS 0 and interval equal to 100ms were used.

Here again, the broker ioticos presented the smallest mean latency, while the broker fluux presented
the smallest standard deviation on average.

3 Conclusions

The measurements obtained in the test performed allow us to reach some important conclusions.

The brokers saas.theakiro.com and broker.emgx.io presented higher latency than their competitors.
The latter lost data when subjected to a slightly increased stress condition.

In all the tests carried out here, the smallest latency was presented by the broker ioticos.org. Even
when messages accumulate in the queue, this broker is the fastest one to process them. This broker is
not tested in any of the references cited, which is a contribution of the present study.

The broker mqtt.fluux.io presented the smallest standard deviation on average, which means that
it is the one that more regularly handles the data transmission.

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Pagina 15

ASSE, Simposio Argentino de Ingenieria de Software

The broker ioticos.org requires the use of credentials, for which users must sign up. It also has the
particularity of providing a root topic when a project node is created in the web page. The topic of
all the messages sent by the publishers and all the topics subscribed by the subscribers in the network
must begin with this root topic. Of course, subtopics can be added at the end of the root topic. Using
the root topic prevents devices outside the network from exchanging messages with devices used in the
project.

Unlike the test carried out in [12,11,14], here we are not interested in evaluating the performance
of the brokers as a function of the payload size, because in our application the messages sent by the
nanosatellite to the land terminal will be short strings containing data measured.

As a future work we propose to perform tests closer to the real need for communication with
a nanosatellite, for example using the sensors that will effectively be used in the project and the
transmission interval necessary to send all the data collected daily during the short connection time.

References

1. Akiro: saas.theakiro.com. Available at https://www.akiroio.com/ (2022), last accessed October 3, 2022

2. Banks, A., Gupta, R.: MQTT version 3.1.1. Oasis standard. http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/0s/mqtt-v3.1.1-0s.html (2014)

3. Chilukuri, R.T.: Public brokers. Available at https://github.com/mqtt/mqtt.org/wiki/public_brokers (2021)

4. Crespo, E.: Aprendiendo Arduino. MQTT. Available at https://aprendiendoarduino.wordpress.com/2018/11/19
/maqtt/ (2018)

5. Emgx: broker.emgx.io. An open-source, cloud-native, distributed MQTT broker for IoT. Available at
https://www.emqx.io/, last accessed October 3, 2022

6. Flespi: mqtt.flespi.io. MQTT broker. Available at https://flespi.com/mqtt-broker, last accessed October 3,
2022

7. Fluux: mqtt.fluux.io. Available at https://flespi.com/mqttbroker, last accessed October 3, 2022

8. Hivemq: broker.hivemgq.com. Available at https://www.hivemq.com/downloads/, last accessed October 3,
2022

9. Ioticos: ioticos.org. Available at https://www.ioticos.org, last accessed October 3, 2022

10. Kotak, J., Shah, A., Shah, A., Rajdev, P.: A comparative analysis on security of MQTT bro-
kers. In: Proceedings of the 2nd Smart Cities Symposium (SCS 2019). pp. 1-5. Bahrain (2019).
https://doi.org/10.1049/cp.2019.0180

11. Lee, S., Kim, H., Hong, D., Ju, H.: Correlation analysis of MQTT loss and delay according to QoS level.
In: Proceedings of the International Conference on Information Networking (ICOIN). Bangkok, Thailand
(2013). https://doi.org/10.1109 /icoin.2013.6496715

12. Luzuriaga, J.E., Cano, J.C., Calafate, C., Manzoni, P., Perez, M., Boronat, P.: Handling mobility in IoT
applications using the MQTT protocol. In: Proceedings of the 2015 Internet Technologies and Applications
(ITA). pp. 245-250. Wrexham, UK (September 2015). https://doi.org/10.1109/ITechA.2015.7317403

13. Mayer, R., D’Angiolo, F., Caporaletti, G., Contreras, D., Perez, H., Collado, F., Loiseau, M.: Estudio y
recomendacién de computadoras de abordo para Cubesat. Tech. report, Technology and Administration
Department. National University of Avellaneda, Avellaneda, Argentina (2022)

14. Mishra, B.: Performance evaluation of MQTT broker servers, Lecture Notes in Computer Science, vol.
10963, pp. 599-609. Springer International Publishing (2018). https://doi.org/10.1007/978-3-319-95171-
3.47

15. Mishra, B., Kertesz, A.: The use of MQTT in M2M and IoT systems: a survey. IEEE Access 8 (2020).
https://doi.org/10.1109/ACCESS.2020.3035849

16. Mishra, B., Mishra, B., Kertesz, A.: Stress-testing MQTT brokers: A comparative analysis of performance
measurements. Energy 14(18) (2021). https://doi.org/10.3390/en14185817

17. Mosquitto: test.mosquitto.org. MQTT broker. Available at http://test.mosquitto.org/, last accessed October
3, 2022

18. MQTT: The standard for IoT messaging. Available at https://mqtt.org/

19. MgttDashboard: broker.mqttdashboard.com. Available at http://www.mqtt-dashboard.com/, last accessed
October 3, 2022

20. O’Leary, N.: Pubsubclient: Arduino client for MQTT. Available at
https://github.com/knolleary/pubsubclient (2020)

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Pagina 16

ASSE, Simposio Argentino de Ingenieria de Software

21. Soni, D., Makwana, A.: A survey on MQTT: A protocol of Internet of Things (IoT). In: Proceedings of the
International Conference on Telecommunication, Power Analysis and Computing Techniques (ICTPACT).
Chennai, India (2017)

22. TMS: MQTT software. Developer guide. Available at https://download.tmssoftware.com/Download /Manuals
/TMSMQT TDevGuide.pdf (2020)

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Pagina 17

