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Abstract. This study presents a solution to significantly improve pro-
tein classification into families or domains using transfer learning. With
more than 229 million proteins in UniProtKB, only 0.25% of them have
been annotated and classified into over 17,000 possible families. Recently,
deep learning (DL) models appeared for this task. However, DL models
require large amounts of data for training, and most protein families have
just a few examples. To tackle this issue, we propose the application of
Transfer Learning (TL) to the classification problem. The TL approach
involves self-supervised learning on large and unlabeled datasets to gen-
erate a numerical embedding for each data point. This representation
learned can then be used with supervised learning on a small, labeled
dataset for a specific classification task. The results achieved in this study
indicate that using TL for protein families classification can reduce the
prediction error by 55% compared to standard methods and by 32% com-
pared to DL models with simple input representations such as one-hot
encoding. This study demonstrates that transfer learning is an effective
and promising technique to improve protein classification and annotation
in large and yet un-annotated databases.

Keywords: Machine learning · Transfer learning · Classification · Pro-
tein family.

1 Introduction

The automatic computational annotation of the protein universe is still an un-
resolved challenge in bioinformatics. Functional annotation of proteins can be
considered critical nowadays due to the rhythm of experimental data produc-
tion [1]. For example, as of April 2023 there are more than 247,000,000 protein
entries in the UniProtKB1; however, only 569,213 (less than 1%) of them have
been reviewed and manually annotated by expert curators. This is a huge breach
between sequencing and annotation capabilities. This gap exists due to the high
speed of experimental data obtention and, on the opposite, the very low and
time-consuming manual curation of results.

1 https://www.uniprot.org/
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The annotation of a protein involves its classification into a family, also named
domain. The protein families database (Pfam2) is the most widely used repos-
itory of protein families. Pfam uses simple sequence similarity by BLAST [2]
or manually curated seed alignments of homologous protein regions to generate
profiles based on hidden Markov models (HMMs). The resulting models are a
representation of each family and can be used to classify novel sequences [3].
Even though this approach is quite successful, there still remain around 25%
of proteins that have not been annotated yet because they do not match an
HMM profile. In many cases this happens because such a profile cannot be even
built since there are only a few examples of a family, which are not sufficient for
building a HMM model. Nowadays, the number of sequences in UniProt grows
at a much faster rate than its Pfam coverage, introducing novel sequences that
may belong to completely new families [4].

As a powerful alternative to profile-HMMs, deep learning (DL) models have
recently appeared [5]. Those models are capable of inferring patterns shared
across the family sequences, allowing autonomous domain annotation of com-
pletely new sequences. This is of high interest for the characterization of se-
quences that do not resemble anything already studied [6]. However, it is well
known that DL techniques rely on large scale data to infer meaningful sequence
patterns. This is a strong limitation for protein annotation since many Pfam fam-
ilies comprise just a small number of sequences. In this work we state that this
issue can be solved with auto- supervised transfer learning (TL) by transferring
Large Language Models (LLMs) representations of protein sequences already
learned without requiring annotations from large-scale protein data [7].

In the last 5 years, several LLM for protein representation based on DL
appeared, which given the raw sequence of a protein calculate a feature vector
that is a unique representation of the protein, named embedding [8]. After that,
a predictive model can efficiently learn the features of samples and perform the
downstream prediction task by using these representations as input. This way,
embedding models perform a process named transfer-learning of knowledge from
one task to another [9].

Protein embedding has in fact recently become a new and highly active area of
research [10]. A recent review [11] has performed a detailed comparison of protein
sequence representation learning methods, explaining each approach and com-
paring them with an experimental benchmark on several bioinformatics tasks:
(i) protein sequence similarity in the embedding space; (ii) protein family clas-
sification; and (iii) ontology-based annotation prediction. The review included
12 methods, and the comparative results have shown that ESM and ProtTrans
were the best methods for most bioinformatics tasks evaluated.

In this work, we propose that ESM and ProtTrans, used in a TL schema, can
effectively improve the protein family classification task in Pfam v32, even when
used with simple and classical machine learning (ML) models, such as k-nearest
neighbors (kNN) and multilayer perceptron (MLP). The results achieved in this
study indicate that using TL for protein families classification can reduce the

2 https://www.ebi.ac.uk/interpro/entry/pfam/
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prediction error by 55% compared to standard HMM methods and by 32% com-
pared to DL models with simple input representations such as one-hot encoding.

2 Transfer learning and protein representation methods

2.1 Transfer learning

Transfer learning (TL) (Fig. 1) is a ML technique where one model is first trained
(left part) with a big unlabeled dataset in a self-supervised way, that is, not using
annotations of any specific task, but predicting parts of the same data fed as in-
put (e.g. masked small sub-sequences). This step is also named pre-training, and
the result is a task-agnostic deep model (also named Large Language Model or
LLM) and an output model associated with the pretext task for self-supervised
learning, which is then discarded. In a second step (right part), the task-agnostic
deep model is frozen and what was learned is “transferred” to another deep archi-
tecture in order to train a new task-specific model. Here another model is trained
with supervised learning on a small dataset with labeled data for a specific task
(e.g. protein family classification). In summary, TL refers to the situation where
what has been learned in one setting is exploited to improve generalization in an-
other one [12]. For proteins there are several already available task-agnostic deep
models, named protein representation methods, which integrate different types
of protein information in a compact representation usually named embeddings.

Transfer learningSelf-supervised
pre-training

Supervised
training

Big unlabeled
dataset

Small
dataset

Labels

Frozen deep model
(embedding)

Task-agnostic
deep model

Disposable
pretext model

Classification
model

(KNN or MLP)

[0.00171, -0.0112, …, 0.0150, -0.221] [0.02289, 0.024, …, -0.031, 0.0058]
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KLEQRLGAE...
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Fig. 1. Transfer learning is a machine learning technique where the knowledge gained
by training a model on one general task is transferred to be reused in a second spe-
cific task. The first model on the left is trained on a big unlabeled dataset, in a self-
supervised way. This process is known as pre-training, and the result is a task-agnostic
deep model (orange). Through transfer learning, the first layers are frozen and trans-
ferred to another deep architecture (light orange). Then, the last layers of the new
model are trained (dark green) with supervised learning on a small dataset with la-
beled data for a specific task, shown at the right.
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2.2 Protein representation methods

Protein representation methods and protein embeddings are becoming known
and required by the community. In fact UniProtKB now provides embeddings
as part of the standard protein annotations (https://www.uniprot.org/help/
embeddings). In recent years, a myriad of protein embedding methods has ap-
peared [13]. A recent review [11] has demonstrated that the Evolutionary Scale
Modeling (ESM) [6] and ProtTrans [14] are those most outstanding protein em-
beddings in terms of representational power. Those models were trained using
more than 200 million (unaligned) sequences from UniProtKB and are based
on Transformers, which have emerged as a powerful general-purpose model ar-
chitecture for representation learning [15], out-performing deep recurrent and
convolutional neural networks. Transformers were originally designed for natural
language processing [16], where context within a text is used to predict masked
(missing) words. The main hypothesis in this pretext task for self-supervised
learning is that the semantics of words can be derived from their contexts. In
this work, we have evaluated the two best protein representation models, ESM
and ProtTrans, according to [11].

ESM [6]: this model was developed by Facebook Research. It uses a deep
Transformer BERT [16] that processes sequences of amino acids as input. BERT
was originally designed for Natural Language Processing (NLP) based on unsu-
pervised learning where context within a text is used to predict missing words.
The model makes an analogy between syllables in text and amino acids in protein
sequences: it learns meaningful encodings for each residue in a self-supervised
way, by masking some of the residues in the sequence and trying to predict
them. This way, it builds an embedding per residue position that encodes the
“meaning” of the residue in that context. Then, the per-residue representation
can be collapsed to a per-protein embedding. After this, the learnt representa-
tion from UniProtKB, already trained and ready-to-use out of the box, can be
“transferred” to be used in a specific downstream task. The model was trained
using the masked language modeling objective, where each input sequence is
corrupted by replacing a fraction of the amino acids with a special mask token,
to predict the missing tokens from the corrupted sequence. ESM was trained
on 220 million sequences in the UniProtKB database. In this comparison we
have used ESM-1b, ESM-1v and ESM2 because those are the best performing
instances of the method according to the authors.

ProtTrans [14]: this model was developed by Google. It was trained using
several Transformer models, thus it is based on unsupervised learning. The au-
thors trained two auto-regressive models (Transformer-XL and XLNet) and four
auto-encoder models (BERT, Albert, Electra, T5) on data from UniRef50 and
the BFD database [17] containing more than 2,000 million proteins and up to
393 billion amino acids. BERT was the first model in NLP which tried to re-
construct corrupted tokens, and is considered the de-facto standard for transfer
learning in NLP. Albert reduced BERT’s complexity by hard parameter sharing
between its attention layers. Electra tries to improve the sampling-efficiency of
the pre-training task by training two networks, a generator and a discriminator.
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T5 consists of an encoder that projects a source language to an embedding space
and a decoder that generates a translation to a target language based on the en-
coder’s embedding. For ProtTrans, single amino acids were considered as input
words; each protein sequence in a line represented the equivalent of “sentences”;
an empty line was inserted between each protein sequence to indicate the “end of
a document”. The information learned by the protein learning models were the
vector representations from the last hidden state of the Transformer. There are
several ProtTrans instances available (ProtBert, ProtAlbert, ProtT5-XL, Pro-
tXL and ProtElectra). We have used the best one as indicated by the authors
in its paper.

3 Materials and experimental setup

3.1 Data

For the experimental comparison of models for protein families classification we
used publicly available Pfam data as in [5]. Expertly curated sequences from the
17,929 families of Pfam v.32.0 were used to define a benchmark annotation task.
Seed sequences from each family were split into challenging train and test sets
by clustering them based on sequence similarity. The clustered split provides a
benchmark task for annotation of protein sequences with remote homology, that
is, sequences in the test set that have low similarity to the ones in the training
set. This is useful as an estimation of how well a model will perform with new
sequences that are quite different from the ones in the training data. The result-
ing benchmark has a hard test set of 21,293 sequences and a total of 1,339,083
sequences for training. We have obtained the classical one-hot representation,
the ESM embeddings (ESM-1b, ESM-1v and ESM2) and ProtTrans (Bert-BDF
and T5-XL) embeddings of all the data.

3.2 Experimental setup

We tested the following ML methods for the Pfam families classification task
without TL (one-hot input representation or raw sequence in the case of HMM
and BLAST) versus with TL (input embedding):

KNN: the classical k-nearest neighbor (kNN) classifier [18], from scikit learn
[19], was used with k = 1 and Euclidean distance between embeddings for de-
termining the neighborhoods. Higher number of k was also tried but with worse
results.

KNN ensemble: an ensemble of 10 kNN classifiers, with k = 1. Each kNN
was trained with an independent subset of the training dataset. The ensemble
used a majority vote algorithm to determine the output class. Majority vote gets
a list of the predictions of each classifier and finds the element that appears more
than half the time as the most voted to determine the output class.

MLP: a multi-layer perceptron (MLP) neural network [20] was implemented
using scikit learn, with 4 hidden layers of size 500, 100, 100 and 1000, respectively.
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The MLP has an identity activation function for each layer, uses backpropagation
with a cross entropy loss function and Adam solver for optimization. The model
was trained for 25 epochs according to an early-stopping with patience = 10, that
is until performance did not change for the last 10 epochs (see Supplementary
Material), using partial fit due the large amount of data. Each partial fit call
used 1% of the training data.

MLP ensemble: an ensemble of 10 MLP classifiers. Each MLP was trained
with an independent subset of the training dataset. The ensemble used a major-
ity vote algorithm, as explained before. The architecture of each MLP and the
number of epochs was the same as described for the single MLP.

In the comparisons we have also included the DL models recently proposed
for this task, ProtCNN and ProtENN [5]. ProtCNN receives a one-hot coded
sequence and learns to automatically extract features to predict family member-
ship. ProtENN is an ensemble of 19 ProtCNNs using a majority vote strategy,
where each model was trained with different random parameter initializations.

4 Results

Table 1 shows, for each classification method (in rows), the error rate (calculated
as the percentage difference between predicted family and golden standard family
for each sequence) in the second column and the corresponding number of errors
obtained by each method in the third column. The upper part of the table
shows the results for the methods without TL. The first four rows reproduce
the results reported in [5] for this same dataset and train/test partition: HMM
and BLAST obtained from the raw sequence, and ProtCNN and ProtENN from
a one-hot encoding input. We have compared the methods with the error rate
because this is how performance is reported in that original comparative work.
The fifth row shows the result of a single MLP trained with sequences encoded
with one-hot. The bottom part of the table shows the results of the kNN, kNN
ensemble, MLP and MLP ensemble classifiers using TL, that is, trained with
inputs encoded with different embeddings (ESM-1b, ESM-1v, ESM2, ProtTrans
Bert-BDF and ProtTrans T5-XL). The best results without TL and with TL are
indicated in bold.

The results in Table 1 indicate that, without TL, the ensemble of DL models
achieves the best result, with 12.2% of error, that is 2,590 errors in families
classification from a total of 21,293 test sequences. Regarding the use of TL for
classification, a single MLP+ProtTrans T5-XL obtained the best result (8,25%
and 1,757 errors), followed by kNN+ProtTrans T5-XL (8,63% and 1,838 errors).
Curiously, ensembles of models do not seem to improve the prediction of the
single classifiers in this application domain. In the case of the MLP, this is due
to the fact that each MLP was trained with an independent subset of the training
dataset, the same way that the KNN model.

Comparing all the embeddings used in this study, it can be affirmed that
using data embedded with ProtTrans T5-XL achieves the best performance in
all models. In some cases, such as in comparison with ESM-1b, the error is even
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diminished by half when ProtTrans T5-XL is used. If the best model not using
TL (ProtENN) and the best model using TL (MLP + ProtTrans T5-XL) are
compared, the last one is the one with the best global results, confirming the
hypothesis of this study, which stated that protein family classification can be
solved with auto-supervised TL by transferring Large Language Models (LLMs)
representations of protein sequences already learned without requiring annota-
tions from large-scale protein data.

If the standard method (HMM) is compared against the best performing
method without TL (ProtENN) and the best performing method with TL (MLP
+ ProtTrans T5-XL), it can be stated that the last models improve the classifi-
cation results by 33% and by an impressive 55%, respectively. It should be noted
that the same single MLP without TL obtains a much worse performance, thus
it can be clearly seen the improvement that the use of embeddings brings to this
task.

Table 1. Pfam families classification results obtained without TL (upper) and with
TL (bottom).

Method Error rate Number of errors

Without
Transfer
Learning

HMM 18.10% 3844
BLAST 35.90% 7639
ProtCNN 27.60% 5882
ProtENN 12.20% 2590
MLP 41.57% 8852

With
Transfer
Learning

ESM-1b

KNN 15.16% 3229
KNN ensemble 23.39% 4981
MLP 14.33% 3052
MLP ensemble 24.96% 5314

ESM-1v

KNN 21.33% 4541
KNN ensemble 31.08% 6618
MLP 18.59% 3959
MLP ensemble 31.06% 6613

ESM2

KNN 15.55% 3311
KNN ensemble 26.90% 5728
MLP 11.48% 2444
MLP ensemble 21.63% 4605

ProtTrans
BERT-BDF

KNN 39.49% 8408
KNN ensemble 55.74% 11868
MLP 21.63% 4606
MLP ensemble 35.36% 7529

ProtTrans
T5-XL

KNN 8.63% 1838
KNN ensemble 15.92% 3390
MLP 8.25% 1757
MLP ensemble 15.92% 3389
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Table 2 shows the performance detail of the best model of Table 1, TL+MLP
model and the TL+MLP ensemble, this way trained with the full training
dataset. The table shows error rate, number of errors, precision, recall and
weighted F1, which was used due to the high imbalance present in training data.
Best performance is shown in bold. It can be seen now that the MLP ensemble
has indeed obtained the best results, as it could be expected.

Table 2. Performance detail of the best performing method (TL+MLP) for Pfam
families classification trained on the full dataset.

TL+MLP Model Error rate Number of errors Prec Rec F1
1 9.05% 1926 0.94441 0.90955 0.91702
2 8.64% 1839 0.94353 0.91363 0.91957
3 8.97% 1911 0.94448 0.91025 0.91728
4 9.26% 1972 0.93868 0.90739 0.91220
5 8.88% 1890 0.94274 0.91124 0.91701

TL+MLP Ensemble 6.48% 1379 0.95644 0.93524 0.93923

5 Conclusions and future work

In this study, we employed transfer learning to enhance the classification of
family proteins in a challenging partition of the full Pfam database, with low
similarity between train and test sets, with machine learning classifiers. We found
that, compared to models without transfer learning, even the most simple ma-
chine learning classifiers, such as kNN and MLP, with transfer learning achieved
better results, that is the decrease in the error rate was remarkable. Moreover,
these simpler classifiers outperformed even more complex models such as deep
learning ones. These results suggest that transfer learning is a viable and ef-
fective solution for improving protein classification. In fact, instead of building
one’s own embedder for proteins, it is very useful to reuse all the computation
time already spent by the available learnt representations. We conclude that
using transfer learning with small sets of annotated sequences, even with very
simple classifiers, is easy to implement and provides significant impact on final
performance. In future work, it would be interesting to explore the combina-
tion of transfer learning with deep learning models to determine their impact on
performance.
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Table 1. Error rate obtained by MLP during training.

Ep Esm1b Esm1v Esm2 ProtTrans
Bert BFD

ProtTrans
T5-XL Without TL

1 21.52% 29.39% 19.04% 34.58% 14.29% 50.23%
2 18.56% 24.75% 16.93% 29.20% 11.78% 46.88%
3 17.68% 23.11% 14.75% 27.76% 11.40% 45.77%
4 16.85% 21.93% 14.72% 26.02% 10.66% 44.35%
5 16.73% 22.51% 14.20% 24.60% 10.11% 45.42%
6 16.98% 21.11% 13.89% 24.15% 9.47% 44.93%
7 16.46% 21.11% 13.91% 24.23% 9.43% 45.50%
8 15.97% 20.41% 13.04% 24.50% 9.36% 44.76%
9 14.95% 20.44% 12.99% 24.67% 9.04% 44.92%

10 15.55% 20.20% 12.51% 23.88% 9.14% 44.23%
11 14.81% 19.88% 12.91% 23.35% 9.26% 44.08%
12 14.92% 20.18% 12.63% 23.22% 8.99% 43.85%
13 14.97% 19.13% 11.91% 22.39% 8.81% 43.54%
14 14.45% 19.90% 12.99% 23.00% 8.78% 43.46%
15 14.81% 19.36% 12.61% 22.36% 8.56% 43.21%
16 15.12% 19.45% 11.91% 23.10% 8.51% 43.97%
17 15.01% 19.32% 12.50% 21.73% 8.66% 43.39%
18 15.07% 19.57% 12.06% 23.05% 8.25% 43.42%
19 14.69% 19.35% 11.63% 22.05% 8.87% 42.54%
20 15.40% 18.84% 11.48% 22.09% 8.57% 42.79%
21 14.42% 19.13% 12.18% 21.81% 8.56% 41.99%
22 14.98% 19.87% 11.67% 21.63% 8.54% 41.91%
23 14.77% 18.85% 11.84% 21.81% 8.45% 42.18%
24 14.33% 18.59% 11.65% 21.70% 8.75% 41.57%
25 14.34% 19.28% 11.74% 22.07% 8.60% 42.13%
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Fig. 1. Percentage of error rate per epoch for the single MLP model trained with
different embeddings and without TL
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