
API recommendation based on Word Embeddings

Ana Martínez Saucedo1, Leonardo Henrique da Rocha Araujo2, and Guillermo
Rodríguez2

1 Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC),
Buenos Aires, Argentina
anmartinez@uade.edu.ar

2 ISISTAN Research Institute (CONICET - UNICEN), Tandil, Buenos Aires,
Argentina

{leonardo.araujo, guillermo.rodriguez}@isistan.unicen.edu.ar

Abstract. In this new era where web services are trending and busi-
nesses constantly develop and expose APIs that can be used by third
parties, finding one which fits a functional requirement is a daunting
task. For this reason, websites such as ProgrammableWeb and APIs.guru
offer a directory of API definitions that can be filtered and searched by
developers. However, searching for APIs that conform to a requirement
on those platforms is still a manual task, and searches are based on
the inclusion or exclusion of query words in an API description that
does not provide relevant results. For this reason, we have explored the
application of word embeddings in the problem of API recommenda-
tion using Word2Vec, FastText and GloVe algorithms, as well as pre-
trained domain-general and software engineering embeddings. We have
constructed a dataset from APIs.guru and retrieved services descrip-
tions to obtain their embeddings and calculate their similarity with a
given query embedding. To this end, we created ten test queries with
their relevant APIs using a subset of the original dataset. With a recall
at 10 recommendations of 69.8% and a nDCG at 10 of 81.4%, we have
obtained promising results which demonstrate embeddings can alleviate
developers’ searches for relevant APIs.

Keywords: API recommendation · word embedding · APIs · microser-
vices · software development

1 Introduction

Software reusability is very important in software development since it can assist
developers to build new and more complex software without the need to re-write
code [8]. Application Programming Interfaces (APIs) – applications that focus
on abstracting a problem and providing an interface for a user to interact with
– are an alternative to provide re-usable code [7]. Nowadays, there are over 2500
publicly available documented API providing services that range from stock and
forex data to text translation3.
3 https://apis.guru

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Página 46

Given the number of available APIs, it is important for the developers to
evaluate whether it is necessary to implement each part of the project they are
working on, or if an API can be used for certain tasks to increase productivity.
However, it is not feasible for developers to manually search through over 2500
API in order to find an interface that provides them the feature they need.
Therefore, the objective of our research is to use the documentation available
for the APIs in a dataset to suggest APIs that match a user query, given that
a direct query in APIs.guru portal is not possible since it only allows keywords
search.

In the literature several works have addressed web service recommendation
in different contexts. Xiong et al. [10] describe a deep learning based hybrid
approach for web service recommendation by combining collaborative filtering
and textual content to support mashup development. Nonetheless, since their
approach is based on matrix factorization, it is liable to cold start and gray
sheep problems. Similarly, Cao et al. [3] propose an approach based on integrated
content and network-based service clustering for mashup development. However,
both approaches focus on mashups and its granularity is at API-level. Thus, finer
granularity could be achieved by considering API endpoints instead.

A relevant recommendation is related to the input query. The user inputs a
description of the feature needed and the recommendation is given considering
the meaning of the words, instead of keywords. This approach is used since
it is possible for the user to provide words that were not in the APIs dataset.
Therefore, to achieve this goal, the recommendation evaluates the input using the
Natural Language Processing (NLP) technique called Word Embeddings. This
algorithm models words as a vector of numbers that represent their meaning,
given other words in the vocabulary [1].

In our experimental analysis, we evaluate different word embeddings algo-
rithms in order to recommend relevant services given a user query. The remain-
der of this paper is organized as follows: the methodology is presented in the
Section 2. The results are presented in Section 3, the conclusion and future work
are presented in section 4.

2 Methodology

In order to obtain API recommendations given a developer query string, we
constructed an API dataset by extracting APIs.guru directories from its GitHub
repository4. For each API, APIs.guru provides a swagger.yaml or openapi.yaml
document (OpenAPI documents adhering to the specification) that describes the
API and each endpoint path that constitutes it. In particular, for each endpoint
we extracted its description for the purpose of obtaining their embeddings and
compare them with a query embedding afterwards.

The first step of our methodology consists of extracting and crawling APIs.guru
directories. To this end we have developed a Python script to automatically

4 https://github.com/APIs-guru/openapi-directory

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Página 47

download, transform and construct an API dataset. It is important to highlight
that during this step we create metadata as well, such as the corresponding
commit hash for a created dataset, and malformed OpenAPI documents which
could not be crawled.

The resulting dataset has the following structure:

{
[ap i] : {

" d e s c r i p t i o n " : " api d e s c r i p t i o n " ,
" endpoints " : {

[endpoint−path] : " endpoint d e s c r i p t i o n "
}

}
}

The second step involves API and endpoint descriptions preprocessing to
ensure quality embeddings in the next step. For this purpose, for each string the
following transformations are applied:

– HTML code removal (such as code snippets and custom formatting).
– Sentences mapping to list of words.
– Creation of bigrams (two-word sequence of words) and trigrams(three-word

sequence of words) that convey a relevant meaning.
– Stop words removal.
– Word lemmatization.

This process results in API endpoint descriptions represented by lists of pro-
cessed words. Therefore, the next step consists of obtaining for each processed
word its corresponding embedding using Word2Vec, FastText or GloVe algo-
rithms (considering that a API endpoint description word exists in the model
vocabulary). To this end, we have employed the Gensim[8] library and pre-
trained embeddings.

Finally, given a query string the last step is executed to obtain its corre-
sponding embeddings and compute the cosine distance (Equation 1) [2] between
the query embedding and each API endpoint description embeddings. In this
way, the most relevant APIs are retrieved given a query.

cos(t, e) =
te

∥t∥∥e∥
=

∑n
i=1 tiei√∑n

i=1 (ti)
2
√∑n

i=1 (ei)
2

(1)

In order to evaluate our approach, we created eight test queries (Table 1) to
determine which API endpoints from our dataset can fulfill a query requirement.
For this purpose, we randomly split 20% of the original dataset (44708 endpoints,
corresponding to commit fb283915) to obtain a test dataset (8941 endpoints).

5 https://github.com/APIs-guru/openapi-directory/commit/
fb28391bf36639c0473935cbe1ebaa484156b786

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Página 48

Splitting the original dataset was necessary to perform an unbiased evaluation
of our approach, and to be able to manually determine the relevance of each
endpoint so that the query requirements are meet.

Query Relevant APIs

current weather 4
upload a video on a platform 3

send mail 1
weather forecast 2

get text from audio 1
translate text 6

object recognition 3
get nearby restaurants 1

Table 1. Test queries and their relevant APIs

Test queries are employed to determine how useful our approach is to rec-
ommend APIs based on textual queries. To this end, for each test query and
word embedding technique several metrics utilized in the literature are calcu-
lated, namely recall, precision, normalized discounted cumulative gain (nDCG)
and F1 score [9]. Our strategy results are reported in the following section.

3 Results

For each test query presented in Section 2, we evaluate our approach performance
in terms of recall, precision, nDGC and F1 score at 10 recommendations (Table
2). An example of API recommendations output for a given query is shown in
Figure 1. Pre-trained embeddings used for each algorithm are depicted in Table
3.

Metric
Embedding Word2Vec FastText GloVe

Recall at 10 69.8% 28.12% 18.75%
Precision at 10 16.3% 6.25% 5%
nDCG at 10 64.1% 22.7% 81.4%
F1 score at 10 24.3% 9.7% 9.18%

Table 2. Recommendation metrics for each embedding technique

6 https://nlp.stanford.edu/projects/glove/

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Página 49

Model Pre-trained embeddings
Word2Vec SO_vectors_200[5] (Stack Overflow posts)
FastText crawl-300d-2M-subword[6] (Common Crawl)
GloVe Wikipedia 2014 + Gigaword 56

Table 3. Pre-trained embeddings used for each model

Fig. 1. API recommendations for query "upload a video on a platform"

Results reveal that Word2Vec model had the best performance on almost
all evaluation metrics, which could be explained as a consequence of using pre-
trained embeddings specific to the software engineering domain rather than gen-
eral domain pre-trained embeddings such as the ones trained with Google News
or Wikipedia entries. In fact, for FastText and Glove models we used the pub-
licly available Common Crawl pre-trained embeddings, which may explain why
they could not capture relations of analogy between an information technology
query and API descriptions.

A similar approach that combines word embeddings and a topic model to
extract high quality talent topics from short texts and then recommend APIs for
a target mashup is presented in [4]. To this end, Word2Vec along Wikipedia pre-
trained embeddings were used. Authors report a recall at 10 of ∼50%, precision
at 10 of ∼99%, nDCG at 10 of ∼80%, and a F1-score at 10 of ∼60%. Even
though their approach has a different objective (recommending APIs for target
mashup), we demonstrate that by using domain-specific (software engineering)
word embeddings solely our approach could outperform some metrics.

Moreover, our Word2Vec-based recommender could successfully retrieve 69.8%
of relevant APIs from the test dataset (recall metric), which are 64.1% useful
in terms of API relevance and position in the recommendation list (nDCG met-
ric). Nonetheless, the fraction of relevant APIs in the recommendation list is low
(16.3%).

4 Conclusion and future work

In this work we have presented an approach to recommend relevant API to de-
velopers using word embeddings. To this end we created an API dataset by ex-
tracting endpoint descriptions from APIs.guru OpenAPI documents. Our initial

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Página 50

results are encouraging in terms of usefulness to developers needing to search for
specific APIs that could solve a problem, with a recall at 10 of 69.8% and a nDCG
at 10 of 64.1% using a Word2Vec model. We consider these results promising as
a consequence of using software engineering pre-trained embeddings.

In order to improve each evaluation metric, we plan to fine-tune Stack Over-
flow embeddings employing API descriptions from the extracted dataset, with
the expectation of obtaining better analogies and interpretation of words com-
monly used to describe APIs. Furthermore, we aim to develop a web application
to enhance user usability of our recommender, allowing periodic updates of the
API dataset to ensure that not only provided API recommendations are relevant
but also current.

References

1. Almeida, F., Xexéo, G.: Word embeddings: A survey. arXiv preprint
arXiv:1901.09069 (2019)

2. Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! a systematic compari-
son of context-counting vs. context-predicting semantic vectors. In: Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers). pp. 238–247 (2014)

3. Cao, B., Liu, X.F., Rahman, M.M., Li, B., Liu, J., Tang, M.: Integrated content
and network-based service clustering and web apis recommendation for mashup
development. IEEE Transactions on Services Computing 13(1), 99–113 (2020).
https://doi.org/10.1109/TSC.2017.2686390

4. Chen, T., Liu, J., Cao, B., Peng, Z., Wen, Y., Li, R.: Web service recommendation
based on word embedding and topic model. In: 2018 IEEE Intl Conf on Parallel
Distributed Processing with Applications, Ubiquitous Computing Communica-
tions, Big Data Cloud Computing, Social Computing Networking, Sustainable
Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom).
pp. 903–910 (2018). https://doi.org/10.1109/BDCloud.2018.00133

5. Efstathiou, V., Chatzilenas, C., Spinellis, D.: Word embeddings for the software
engineering domain. In: Proceedings of the 15th International Conference on Min-
ing Software Repositories. p. 38–41. MSR ’18, Association for Computing Ma-
chinery, New York, NY, USA (2018). https://doi.org/10.1145/3196398.3196448,
https://doi.org/10.1145/3196398.3196448

6. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-
training distributed word representations. In: Proceedings of the International Con-
ference on Language Resources and Evaluation (LREC 2018) (2018)

7. Reddy, M.: API Design for C++. Elsevier (2011)
8. Řehůřek, R., Sojka, P.: Software Framework for Topic Modelling with Large Cor-

pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks. pp. 45–50. ELRA, Valletta, Malta (May 2010), http://is.muni.cz/
publication/884893/en

9. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to information retrieval,
vol. 39. Cambridge University Press Cambridge (2008)

10. Xiong, R., Wang, J., Zhang, N., Ma, Y.: Deep hybrid collaborative filtering for
web service recommendation. Expert Systems with Applications 110, 191–205
(2018). https://doi.org/https://doi.org/10.1016/j.eswa.2018.05.039, https://www.
sciencedirect.com/science/article/pii/S0957417418303385

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 52 JAIIO - ASSE - ISSN: 2451-7496 - Página 51

