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Resumen The homophily phenomenon in social networks causes users
to interact primarily with others who share their interests and cultural
backgrounds, leading to the formation of "echo chambers" [1–3].
The notion of cultural diversity among users and communities becomes
relevant in this context. While previous studies have investigated di-
versity in interaction graphs, to the best of our knowledge, none have
explored the degree of diversity based on community embedding, which
has been proven effective in measuring the positioning of communities in
various social dimensions [4–7].
Building on the work of [7], we propose characterizing and measuring
diversity through an innovative algorithm based on community embed-
ding. We propose a novel algorithm based on community embedding to
characterize and measure diversity. Our approach builds upon prior work
on diversity in social media and involves iteratively updating values for
the diversity of communities and individual users.
To demonstrate the effectiveness of our algorithm, we conduct a case
study analyzing over over 800 million posts in 9 million discussion sub-
reddits of different ethnic groups on Reddit. Next, we generated em-
beddings for each community using community2vec [8] and developed
algorithms to quantify cultural diversity based on these embeddings.
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