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Abstract.  Nowadays, sepsis is considered a global burden disease with an 
annual incidence of three million neonatal cases. Nevertheless, there are no ho-
mogeneous criteria for neonatal sepsis. Furthermore, adult sepsis scores don’t 
work properly in neonatal Intensive Care Units (ICUs) settings due to the specific 
characteristics of the neonates' immune systems. This work describes and surveys 
a machine-learning computer-aided diagnosis approach for predicting sepsis 
mortality in neonatal ICUs. The survey is based on a retrospective cohort study 
in which each patient has an initial sepsis-related diagnosis in the first 24h after 
ICU admission. Our experiments are based on four different machine-learning 
techniques: decision trees, random forests, support vector machines and artificial 
neural networks. The predictive power was assessed using accuracy, sensitivity, 
and specificity. The importance of the variables was obtained automatically 
through data science techniques using R. The approach with the best performance 
was the random forest, which achieves an accuracy of 97% in the prediction of 
mortality.  
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1 Introduction 

Computer-aided diagnosis (CAD) based on machine-learning (ML) can already be lev-
eraged to predict sepsis mortality in patients admitted [1] in Intensive Care Units 
(ICUs). The same principle applies to Neonatal ICUs (NICUs) where early infant exitus 
are often caused by sepsis [2]. In this context, a CAD tool can assist clinicians in making 
medical decisions based on historical case results that the machine has learned. 

The neonatal stage starts with the patient’s date of birth and terminated 28 days after 
birth [3]. If the baby is born prematurely, the delivery of care in NICUs could continue 
beyond the first 28 days [4]. The provision of care in NICUs is known to be especially 
complex in healthcare organizations where the decisions and results can be influenced 
by factors such as technology, people, setting, logistics, skills, culture, and experience 
of professionals [5]. Because of these factors, healthcare professionals working at NI-
CUs suffer a high level of stress that has a direct impact in the attention given to neo-
nates [6]. The continuous fatigue experienced by doctors and nurses in these settings 
may reduce the sepsis diagnosis accuracy [7], treatment definition and patients’ moni-
toring.  The situation worsens taking into consideration that the sepsis scoring systems 
for neonates differ in small but fundamental details from adult sepsis [8]. 

Sepsis in neonates presents the highest disease incidence among all age groups of 
patients with three million of cases by year [9]. In 2018, almost 15% of neonatal deaths 
(375,000) were caused by sepsis [10]. In 2001 a task force of 19 critical care clinicians 
defined sepsis as a “life-threatening organ dysfunction caused by a dysregulated re-
sponse to infection” [11] but there is not a homogeneous criteria for neonatal sepsis 
[12]. Based on this definition, clinicians have developed scores tools that help to get 
more accurate diagnosis in adults and pediatrics patients such as the Sequential Organ 
Failure Assessment Score (SOFA), quick SOFA (qSOFA) and pediatrics SOFA 
(pSOFA) [13][14]. Compared to adults, the immaturity of neonates’ immunological 
systems [15] and the potential exposure to infections at the intrauterine level, should 
involve different diagnoses and risk assessment to reach better short- and long-term 
outcomes [12]. Since these patients require a specific tools, clinicians have designed 
neonatal SOFA (nSOFA) score to predict mortality in the in the NICUs because of 
Late-onset sepsis (LOS) [16]. 

Sepsis situations emerged because of the quality of the received medical care, state 
of the healthcare infrastructure (national, regional, and local), lack of prevention, and 
deficient management of resources. LOS occurs after the first weeks of life, and it is 
associated with contaminated medical equipment, environmental pathogens, or obstet-
ric complications. Early-onset sepsis (EOS) [17] appears during the first days of life 
and it is associated with gynecologic complications and presents a quicker disease pro-
gression that may involve multi-organ failure. Attending to incidence and mortality for 
neonatal sepsis, the overall figures are higher for EOS than LOS [18]. Other factors, 
such as early delivery (25–32 weeks), low-birthweight (<1,500g), immaturity of the 
immune system and scarcity of blood volume (below 13.6 ml/kg) [19], also contribute 
to the child death rate. The complexity of this equation is further increase by common 
symptoms [2], Diversity of pathogens typically found at NICUs [20] and Diagnostic 
variables [13] used for sepsis prediction. The combination of those factors makes it 
difficult to find a formula to predict sepsis [21]. 
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ML is especially effective in making predictions with non-linear factors. ML and 
data science techniques have already been applied to sepsis recognition through predic-
tive models [22]. At this point, some alterations of vital signs such as heart rate (HR), 
respiratory rate (RR), and oxygen saturation from pulse oximetry (SpO2) have been 
identified as sepsis precursors in patients admitted to the NICU [23]. Scientists have 
also developed predictive algorithms by merging heterogeneous datasets acquired and 
documented at the NICUs. Other studies [24] recommend the inclusion of sociodemo-
graphic, obstetric, neonatal, and maternal infectious risk factors. Considering every-
thing discussed so far, the aim of this study has been to survey the performance of ML 
classifiers to predict EOS sepsis mortality. We have surveyed decision trees (DT), ran-
dom forests (RF), support vector machines (SVM), and artificial neural networks 
(ANN) focused on mortality prediction in very young patients admitted at the NICUs. 
The dataset Medical Information Mart for Intensive Care (MIMIC-III) described below 
was used as the main source of data for training/testing purposes of this research. 

2 Patients and Methods 

The clinical data used in this study were obtained from “Medical Information Mart for 
Intensive Care” (MIMIC-III) v.1.4 [25] developed by the Laboratory for Computational 
Physiology at Massachusetts Institute of Technology (MIT). The MIMIC-III database 
has been populated with information from “Beth Israel Deaconess Medical Center in 
Boston”, United States (U.S) gathered from several sources such as the archives from 
critical care information systems, hospital electronic health record databases and the 
“U.S Social Security Administration Death Master File” [26]. In particular, MIMIC-III 
contains 53,423 hospital admissions for patients above 16 years of age admitted from 
2001. MIMIC-III also includes 7,870 hospital admissions for neonates (from 2001 to 
2008).  This database is publicly and freely available and the information is anonymized 
to comply with the safeguarding patient privacy, following HIPAA deidentification 
standards [27]. The information related to dates has been also randomly altered for the 
patients in the database. 

Bearing in mind the available information in MIMIC-III and the EOS [23] time 
frame characteristics, the initial cohort of patients grouped patients less than 12 months 
old who were admitted in the NICU. At the same time, the survey considered a range 
of time between 6 to 24 first hours of stay. With this premise, the study reaches a doble 
objective: prevent risk of bias from further clinical management and consider the in-
ception of proinflammatory secretions [28]. The second criteria considered the availa-
ble status/cause codified in the International Classification of Diseases or ICD-9-CM 
codes associated with septicemia of newborn being susceptible of sepsis diagnosis [29]. 
As a result of the selection criteria (based on structured query language (SQL) on top 
of PostgreSQL Database), a total of 247 neonates matched these conditions. A third 
filter was applied to this group of patients taking into consideration data related to mark-
ers of infection [30] collected from charted events (e.g., notes, laboratory tests, and 
fluid balance) compiled from the NICU clinical systems, Philips Care Value and iM-
DSoft MetaVision [25]. Vital signs measurements precursors of sepsis [2] were also 
extracted, including heart rate, admission weight and temperature.  
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The final filter considers all those patients with true positive results in pathogens 
associated with sepsis [31] considering the available information in MIMIC-III. In line 
with all the previous steps, the final cohort classifies 112 patients that was randomly 
split in two datasets for training (80%) and testing (20%) purposes looking for the sepsis 
mortality prediction.  To reach this goal, the survey applies different ML techniques. In 
particular, we have surveyed the following classification algorithms: DT [32], RF [33], 
SVM [34], ANN [35]. 

 

Fig. 1. CAD Sepsis Flow. Selection of variables regarding with MIMIC-III Database linked with 
the purpose of the analysis. First step, from the whole cohort of patients (46,520), the initial group 
of preliminary patients is filter base on the age of the patient (8,110). The number of patients is 
reduced filtering by diagnosis associated with ICD-9-CM septicemia codes. According with this 
premise, the number of patients is reduced to an intermediate cohort of 247. Vital signs, clinical 
and laboratory variables are added to the initial group (basically associates to demographic char-
acteristics) considering the range of time between the six first hours in NICU and 24 hours. The 
final cohort of patients consider all those patients with a positive pathogen analysis.  

3 Results 

3.1 Decisions Trees 

Decision Trees selects the most correlated variables. In this way, the most important 
variables are the number of days in the ICU (level 1), the minimum values from weight 
and maximum values from pH in terms of hydrogen ion (H+) concentration (level 2) 
and finally, the pathogen labeling in the third level of the tree’s leaves. We pruned the 
tree to reduce the number of original branches (two levels) maintaining the length of 
stay (LoS) at NICU as the first layer in the tree. The minimum count of neutrophils was 
maintained as a second level of variables in the hierarchy of the tree while the rest of 
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variables were removed. This algorithm’s conclusion is coherent with the risk of infec-
tion. The prune procedure did not show better results. The obtained accuracy (87%), 
sensitivity (89%) and specificity (66%) are surprisingly good. 

3.2 Random Forest 

In this case, the algorithm implementation has been carried out with 500 classification 
trees. As it is shown in Fig. 2, the mean decrease in Gini [36] coefficient identified, for 
each variable, how important was this coefficient attending to classifying data purposes. 
Moreover, Gini identified the contribution of each variable related to the whole random 
forest homogeneity, considering nodes and leaves of our model. In this way, the higher 
the value of the mean decreases in the Gini score, the higher the importance of the 
variable in our model.  

 
Fig. 2. Random Forest variable importance. The length of stay at NICU, the minimum count of 
neutrophils, maximum level of pH, maximum count of white blood cells, and minimum patient’s 
weight are the most relevant variables in the analysis. This group of variables are the most cor-
related taking into consideration the correlation matrix and clinical literature that supports the 
suspected precursors of sepsis 

The variables in the analysis, in descending order of relevance are LoS, the minimum 
count of neutrophils, the maximum level of pH, the maximum count of white blood 
cells, and the minimum patient’s weight are the most relevant variables in the analysis. 
This group of variables are the most correlated taking into consideration the correlation 
matrix and clinical literature that supports the suspected precursors of sepsis. The im-
plementation of this algorithm reached a high result of accuracy (96%), sensitivity 
(96%) and specificity (100%). The implementation was modified to increase the num-
ber of trees (1000) but results from this model suggests a possible over-fitting due the 
low volume of data. In this case, the implementation with 500 trees was considered the 
best option. 
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3.3 Support Vector Machines 

Support Vector Machines were implemented with four personalized kernel approaches: 
polynomial, lineal (vanilla), hyperbolic and radial. Taking into consideration these as-
sertions, even when performance reached by the hyperbolic and radial configuration 
present good results as shows the Table I, the radial kernel was chosen to optimize the 
algorithm's performance (accuracy, 92%; sensitivity, 100% and specificity, 0%). Since 
the performance of the SVM algorithm depends on their hyperparameter settings, the 
kernel was customized according to Cost (C) and Sigma hyperparameter values [37]. 
This customization prevents generalization issues that are related to the theoretical pre-
dictions goals that don't commonly take place in real-world cases. In this way, the hy-
perparameters C Cost (5.18e+05) and Sigma (7.2e-08) were customized for this pur-
pose but the implementation did not reach better results (accuracy, 87%). 

3.4 Artificial Neural Network 

Artificial Neural Networks were the final approach in this study. To tackle the problem 
with ANN, the expected result (mortality prediction) was compared with different im-
plementations and network complexities. The initial and most simple architecture is 
based on a logistic activation function. This simple approach shows good results in 
terms of accuracy (83%) but, to increase the optimization of the architecture, it was 
modified with different and more complex networks. The best results were reached with 
an architecture of three layers and four neurons per each. Considering this architecture, 
it was necessary to set the ANN hyper-parameters that can significantly reduce im-
proves the performance. The learning rate (LR) is a customizable hyperparameter that 
manages the speed of the model's adaptation to the problem. The LR usually has a small 
positive value in the range between 0.0 and 1.0. In this configuration, the learning rate 
parameter was modified with an exponential approach (0.1, 0.01, 0.001, 0.0001). Tak-
ing into consideration these changes, the accuracy was improved to 88% as the Table I 
shows. From this point of view, the accuracy has reached an optimal level of perfor-
mance. 

This research has assessed the feasibility of a CAD approach for sepsis-related mor-
tality prediction. In our experiments, the RF classifier achieved the maximum perfor-
mance: 97% of accuracy, 95% of specificity and 100% of sensitivity. Note that sensi-
tivity (100%) indicates how well the classifier predicts sepsis, while specificity (95%) 
indicates how well the classifier predicts healing. Besides the performance obtained 
with RF, the accuracy reported by the rest of the models is very similar: between 88% 
and 96% as it shown in Table 1. These percentages can be considered as reliable results 
considering that a good clinical predictor should have a predictive power greater than 
80-85% [37][38]. The results confirm that LOS, blood neutrophil concentrations, pH, 
white blood cells, pCO2 and weight are the most significative variables to predict mor-
tality. 
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Table 1. Algorithms results for sepsis mortality prediction 

 Algorithm in test scenario 

Trees Random 
Fores500 

Trees 

SVM 

No 
Pruned 

Pruned Polynomial Linear Hyperbolic Radial 

Accuracy 0.87 0.87 0.96 0.88 0.88 0.92 0.92 

Precision 0.96 0.96 1 0.92 0.92 0.92 0.92 

Sensitivity 0.89 0.89 0.96 0.95 0.95 1 1 

Specificity 0.66 0.66 1 0 0 0 0 

4 Conclusion 
Since neonates have a low volume of blood, it is difficult to get a high number of la-
boratory test results. For this reason, we have also considered other vital signs such as 
blood pressure and temperature even when these variables have proven not to be so 
relevant according with the algorithm’s correlations. Quite interestingly, the pathogen 
cultures do not show strong evidence of correlation. This would entail that the type of 
microorganism behind each sepsis episode would not have seen a sharp impact on the 
patient’s outcome, bearing in mind the algorithms’ results. This fact may have an im-
portant consequence in scheduling, prioritization and decision making at the NICUs 
since the cultures usually take several hours to complete. According to our results, this 
step, although aprioristically crucial, can be adjourned in favor of other life-saving ac-
tions.  

Even when it is difficult to establish comparations between studies due to dataset 
differences, cohort differences, and measurement of outcome metrics, our survey re-
sults are aligned with other studies focus on sepsis prediction in terms of specificity and 
sensibility applying different AI techniques but none of them focus mortality predic-
tion: 
• The dataset [38] was set from the CHOP NICU registry in Verona Hospital, Italy. 

The data was extracted from the Electronic Health Record (EHR) considering 618 
patients that met the criteria of inclusion/exclusion (0.98 of sensitivity/0.71 of spec-
ificity). 

• The dataset [39] was collected during 18 months from medical records from the In-
stituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPerIER), Mexico. 
The survey considered 236 neonates hospitalized in the Neonatal Intensive Care Unit 
(NICU) that met the criteria of inclusion/exclusion (93.3% sensitivity/80% specific-
ity). 
The field of neonatology is one of the areas of intensive care where the amount of 

data is being boosted thanks to the exponential innovation in medical technology. Fu-
ture works could consider these new data sources (e.g., advanced medical imaging, IoT 
sensors in cradles, data from sources such as pumps, electrocardiograms, etc.) as part 
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of the datasets to improve the reached results.  Additional advancements could be at-
tained with the addition of new promising biomarkers (e.g., PCR, ILK6 / IK8, CRP or 
Procalcitonin levels) [39].  

For now, and as stated at the beginning of this text, CAD systems, and machine 
learning represent a very powerful approach to achieving an acceptable compromise 
between the speed and accuracy related to the diagnosis, prognosis, and applied treat-
ments. This is especially true in frantic healthcare areas, such as the NICUs. All those 
variabilities considering not only demographics and laboratory variables but also genes 
and novel biomarkers promote an emerging approach to precision diagnostics in terms 
of prevention. Fulfilling this goal is necessary for a huge amount of computational re-
sources for being able to reach an individual level from a population point of view. AI 
applied to risk stratification, assessment and early-markers identification will play a 
key role in treatments and sepsis disease complications, combining AI-based with hu-
man experts’ knowledge, experience, and skills. Replacement of healthcare profession-
als is not feasible nowadays.  

In the future, CAD, AI-based ML, and robotics will be benefited from the clinical 
knowledge of today but it will demand a strong collaboration for AI engineers, clinical 
researchers, and practitioners. In any case, even in the future, it will be necessary to 
deal with limitations that need to be considered as a general challenge in AI and ML, 
the need for more samples to fit the models properly. With not enough samples the 
model induces bias reducing the robustness. So, as part of future work, we will consider 
the use of additional datasets with more predictors for reaching better results. 
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