
InspectJS: Leveraging Code Similarity and
User-Feedback for Effective Taint Specification

Inference for JavaScript

Saikat Dutta1, Diego Garbervetsky2, Shuvendu Lahiri3, and Max Schäfer4

1 DC/UBA. ICC/CONICET,CABA, Argentina
2 UIUC, UrbanaUSA

3 Microsoft Research, Seattle,USA
4 GitHub, Oxford,UK

Abstract. Static analysis has established itself as a weapon of choice for
detecting security vulnerabilities. Taint analysis in particular is a very
general and powerful technique, where security policies are expressed in
terms of forbidden flows, either from untrusted input sources to sensitive
sinks (in integrity policies) or from sensitive sources to untrusted sinks
(in confidentiality policies). The appeal of this approach is that the taint-
tracking mechanism has to be implemented only once, and can then be
parameterized with different taint specifications (that is, sets of sources
and sinks, as well as any sanitizers that render otherwise problematic
flows innocuous) to detect many different kinds of vulnerabilities.
But while techniques for implementing scalable inter-procedural static
taint tracking are fairly well established, crafting taint specifications is
still more of an art than a science, and in practice tends to involve a lot
of manual effort.
Past work has focussed on automated techniques for inferring taint spec-
ifications for libraries either from their implementation or from the way
they tend to be used in client code. Among the latter, machine learning-
based approaches have shown great promise.
In this work we present our experience combining an existing machine-
learning approach to mining sink specifications for JavaScript libraries
with manual taint modelling in the context of GitHub’s CodeQL analysis
framework. We show that the machine-learning component can success-
fully infer many new taint sinks that either are not part of the manual
modelling or are not detected due to analysis incompleteness. Moreover,
we present techniques for organizing sink predictions using automated
ranking and code-similarity metrics that allow an analysis engineer to
efficiently sift through large numbers of predictions to identify true pos-
itives.
Published in: 2022 IEEE/ACM 44th International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP).
DOI: https://doi.org/10.1145/3510457.3513048

Keywords: Taint Analysis, Machine Learning, JavaScript

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 73


