
Domain Adaptation and Transfer Learning 
methods enhance Deep Learning Models used in 
Inner Speech Based Brain Computer Interfaces

Luciano Ivan Zablocki1,#, Agust́ın Nicolás Mendoza1,#, Nicolás Nieto2,3,∗
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3 Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional,

sinc(i), UNL-CONICET *nnieto@sinc.unl.edu.ar.

Abstract. Brain Computer Interfaces are useful devices that can par-
tially restore the communication from severe compromised patients. Al-
though the advances in deep learning have significantly improved brain
pattern recognition, a large amount of data is required for training these
deep architectures. In the last years, the inner speech paradigm has drew
much attention, as it can potentially allow a natural control of different
devices. However, as of the date of this publication, there is only a small
amount of data available in this paradigm. In this work we show that it is
possible, by means of transfer learning and domain adaptation methods,
to make the most of the scarce data, enhancing the training process of a
deep learning architecture used in brain computer interfaces.
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1 Introduction

Brain Computer Interfaces (BCIs) are useful tools that allow users to control
external devices only by using their cerebral activity [18]. These technologies are
fundamental for patients who suffer from strokes, amyotrophic lateral sclerosis,
or any other accident that may interrupt the normal communication between the
brain and the muscles. By means of a BCI, these patients can partially restore
their capability to communicate and interact with the environment, significantly
improving their life quality [15].

The surface electroencephalography (EEG) is widely used for measuring the
brain activity in a BCI, as it is a standard and noninvasive technique [10]. EEG
provides signals with good time resolution, allowing real time applications, but
with a low signal-noise ratio and with a high inter and intra-subject variability
[11]. One of the existing BCI paradigms is the inner speech, which refers to the
mental process of imagining one’s own voice, and possibly enabling a natural
method for controlling different devices, just by thinking of a certain command
[11].
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In the last decades, the rise of deep learning has been of great benefit for the
BCIs, mainly with the use of Convolutional Neural Networks (CNNs) as brain
pattern classifiers [17,3,9]. An important downside of these deep structures is
that they require a big amount of data to train its many parameters. As inner
speech is a relatively recent paradigm there is only a limited amount of data
available for training deep models.

As mentioned before, the high variability in the EEG data makes the BCIs
an instrument that needs to be highly personalized [16]. Several transfer learning
and domain adaptation techniques are paving the way to take the most of the
already scarce data [14,6,19,4,16], and to solve these potential differences in the
data.

In this work we combine a domain adaptation technique [6]. that allows us to
use data from different subjects (domains). We also combine this method with
a transfer learning method and pre-train a deep structure on several different
subjects and then fine-tune the network with the target subject. We show that
this process enhances the training process of a CNN used in an BCI.

2 Materials and Methods

2.1 Data description

Tasks and participants. The dataset presented in [12], which contains EEG
signals from ten healthy participants, was used for the experiments. The par-
ticipants performed three different paradigms: pronounced speech, inner speech
and visualized condition. In this study, we focus on distinguishing between the
signals produced in the inner speech and the visualized condition paradigms, as
it was shown that is a more challenging task [13].

The EEG data were acquired with a BioSemi ActiveTwo acquisition system
of 128+8 channels at 1024 Hz. It was later down-sampled 4 times and a standard
EEG signal processing was applied to each subject. The number of the available
trials varied among subjects. A more detailed description of the acquisition pro-
cedures, number of trials for each subject and preprocessing can be found in
[12].

EEG processing. Each trial has a duration of 2.5 seconds but only the last 2
seconds were used, preventing any protocol-evoked EEG potential described in
[12]. The trials were later split into ten smaller trials of 200ms (51 samples) with
the main goal of data augmentation. This procedure was performed after sepa-
rating the trials between train, validation and test folds, avoiding data leakage.
Finally, the data was scaled between 0 and 1 with a minmax scaler that finds
its parameters in the train set.

2.2 Classification algorithm

Convolutional Neural Networks. These architectures are one of the most
used in deep learning, as it allows end-to-end learning, working as both fea-
ture extractor and classifier. They were originally introduced in [7] and had a
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huge impact on artificial intelligence in general and in the BCIs application in
particular ever since ever since [17,3,9,5].

The convolutional architecture used in this work is summarize in Table 1.1.
The kernel size was 3x3, with a stride and a padding equal to 1. The dropouts
probabilities were set to 0.2 for the first two layers, and 0.3 for the last one. The
activation function used was the Exponential Linear Unit (ELU). The network
had 13,818 trainable parameters that were in their majority parameters that
correspond to the linear layers. This architecture was obtained as the network
with the minimum number of parameters that converge in the validation set.

Table 1.1: Model Architecture

================================================================

Layer Output Shape Param #

================================================================

INet [128, 2] --

Conv2d [128, 4, 128, 51] 40

MaxPool2d [128, 4, 64, 25] --

Dropout [128, 4, 64, 25] --

Conv2d [128, 8, 64, 25] 296

MaxPool2d [128, 8, 32, 12] --

Dropout [128, 8, 32, 12] --

Conv2d [128, 16, 32, 12] 1,168

MaxPool2d [128, 16, 16, 6] --

Dropout [128, 16, 16, 6] --

Linear [128, 8] 12,296

Linear [128, 2] 18

================================================================

Domain Adaptation and Transfer Learning. As noted before, the EEG
data has a high inter and intra-subject variability, requiring highly personalized
BCIs [16]. In a traditional approach, the classifiers are trained only on the data
from one subject, discarding the data from the others subjects: we call this
approach “Simple Model”. Aiming to make the most out of the available data,
we use the Euclidean Alignment method [6]. We apply this alignment between
the data from 9 subjects that were not the target subject. Then, we pre-train a
CNN with the aligned data of the 9 subjects. Pre-training was performed using
a learning rate of 0.001 and 200 training epochs. Early stopping was also used,
with 20 epochs of tolerance, but with a minimum of 40 epochs of training. The
used batch size was 1280. Finally we transfer this pretrained model’s weights
and fine-tune the whole network parameters with the data from the subject of
interest, as in [2]. The data of the target subject is aligned using only the train
fold, emulating a real-world application, in which this data will be available just
at the fine-tuning phase. We call this approach the “Pretrain-finetune Model”.
Finally, aiming to demonstrate the relevance of the fine-tuning phase, we test the
pretrained model over the aligned data but without fine tuning the network with
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the training fold of the subject of interest. We call this approach the “Pretrain
Model”. Fine tuning phase was done using a learning rate of 0.001 and 200
training epochs. The early stopping tolerance and minimum epochs was 100 and
40, respectively. Chosen batch size was 128. AdamW [8] was used as optimizer
for both parts of the training process.

Fig. 1: Violin plots for test accuracy distribution obtained with Simple and
Pretrain-finetune models. For each subject the statistical significance according
to a T-Test-Paired is marked with “ * ” (p ≤ 0.01).

3 Results

Aiming to demonstrate the difference between the three methods, a K-fold cross
validation was used, with K = 20, splitting the data in train, validation and test
folds, with 70%, 10%, 20%, respectively. For all models, the test folds were the
same, aiming to make a paired and more fair comparison. We obtain a perfor-
mance distribution for each subject and each method, as depicted in Figure 1
and Figure 2. For five out of ten subjects, the accuracy distribution was signif-
icantly improved by the “Pretrain-finetune Model” with respect to the “Simple
Model”, according to a T-Test-Paired with a significance threshold of 0.01. In
the rest of the subjects, the “Pretrain-finetune Model” accuracy was similar or
not significantly worse that the one obtained from the “Simple Model”. Figure 2
clearly shows that the fine tuning step is crucial for the network to work prop-
erly. This is mainly due to the fact that the distributions are highly variable and
the test data is only aligned with the data of the same subject and not with the
data used in the pretraining step. We did not include the target’s train fold in
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Fig. 2: Violin plots for test accuracy distribution obtained with Pretrain and
Pretrain-finetune models. For each subject the statistical significance according
to a T-Test-Paired is marked with “ * ” (p ≤ 0.01).

the alignment process because it is how the network will be used in real time
applications.

A more detailed view of the results is also shown in Table 1.2.

Table 1.2: Test accuracy comparison

PRETRAIN MODEL SIMPLE MODEL PRETRAIN-FINTUNE MODEL

Sub Acc Std Acc Std Acc Std

1 0.5006 0.0303 0.7495 0.1114 0.6963 0.1336

2 0.4974 0.0375 0.7968 0.0842 0.7417 0.0964

3 0.5713 0.0800 0.7907 0.0576 0.8006 0.0494

4 0.5036 0.0297 0.5525 0.0585 0.5583 0.0388

5 0.4854 0.0314 0.9401 0.0307 0.9406 0.0205

6 0.5092 0.0380 0.8232 0.0814 0.8943 0.0339

7 0.4906 0.0450 0.8442 0.0428 0.8578 0.0380

8 0.5088 0.0465 0.6249 0.0591 0.7094 0.0741

9 0.5000 0.0421 0.8370 0.0795 0.8406 0.0563

10 0.5177 0.0483 0.7817 0.1416 0.8516 0.0266

4 Conclusions and Discussion

We demonstrated that the proposed approach can incorporate new information
to the classifier, using the whole available data. Needless to say, much further
work has to be done, but this is without doubt a path that could be followed

ASAI, Simposio Argentino de Inteligencia Artificial

Memorias de las 51 JAIIO - ASAI - ISSN: 2451-7496 - Página 58



in order to make the most out of the scarce available data when training deep
learning models in BCIs applications.
A future path to explore could be to analyze if it is beneficial to exclude subjects
from the pretraining step, as some of them are more difficult to classify, and
therefore can be left out of the pretraining process if the information provided is
not significant. This could improve the test accuracy obtained in the fine tuning
phase, and reduce the pretraining time. Also, the whole 128 available sensors
were used as an input to CNN. Another approach, used in [1], is to use just a
subset of channels, giving more importance to the ones that are related to the
left-hemisphere of the brain, where more speech related brain activity should be
present.
For the fine-tuning training, the weights of the last linear layer are reinitialized,
and the whole model is trained again with the subject that will be tested. We
can freeze some of the layers, leaving the parameters unchanged, or we can
reinitialize more layers than just the last one.
Finally, other performance indicators, as training speed, convergence or loss,
could also be improved by the proposed approach. We did not analyze them in
this work but could also be important in the future, as these values are crucial
for real applications.
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