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Abstract

This work presents a hybrid wrapper/filter algorithm for feature subset
selection that can use a combination of several quality criteria measures
to rank the set of features of a dataset. These ranked features are used to
prune the search space of subsets of possible features such that the number
of times the wrapper executes the learning algorithm for a dataset with M
features is reduced to O(M) runs. Experimental results using 14 datasets
show that, for most of the datasets, the AUC assessed using the reduced
feature set is comparable to the AUC of the model constructed using all
the features. Furthermore, the algorithm archieved a good reduction in
the number of features.
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1 Introduction

Feature subset selection is a prevalent problem in Machine Learning and Data
Mining, in particular for application areas in which datasets have a great number
of features. In such cases, feature subset selection plays an important role and
is often applied as a pre-processing step to reduce the number of features given
to a learning algorithm. Feature subset selection (FSS) is a search problem,
whereby each search state specifies a subset of possible features of the task at
hand. Exhaustive evaluation of all feature subsets is generally intractable, and
heuristic methods are often used.

The aim of feature selection is three-fold Guyon and Elisseeff (2003): (1) im-
proving the prediction performance of models, (2) providing smaller and more
cost-effective models and (3) enhancing understanding of the underlying concept
which generated the data. Some methods for feature selection give more em-
phasis on one aspect than another, although improving prediction performance
is by far the most studied.

In this work, we propose a hybrid wrapper/filter FSS algorithm for super-
vised classifications tasks that uses a combination of several quality criteria
measures to rank the set features of a dataset, although this algorithm can also
be applied whenever various methods that rank features using different quality
criteria are available. In order to validate our algorithm, we carried out an em-
pirical evaluation on 14 datasets from UCI Newman et al. (1998). Results show
that, for most of the datasets, this hybrid approach is able to keep the AUC
comparable to the AUC of the model constructed using all the features, as well
as achieving a good reduction in the number of features.

This work is organised as follows: Section 2 describes some feature selection
methods. Section 3 presents the hybrid wrapper/filter algorithm. Section 4
presents a way to construct a new measure for feature quality criteria based on
the combination of other measures. Section 5 presents the experimental results
and Section 6 concludes.

2 Feature Subset Selection

Supervised learning algorithms take as input a training set of N classified in-
stances {(x1, y1), ..., (xN , yN )} for some unknown function y = f(x), where the
xi values are typically vectors of the form (xi1, xi2, ..., xiM ), and xij denotes the
value of the j-th feature (or attribute) Xj of xi. For classification purposes, the
y values are drawn from a discrete set of NCl classes, i.e. y ∈ {C1, C2, ..., CNCl

}.
From that training set, a learning algorithm induces a classifier, which is a hy-
pothesis h about the true unknown function f . Although a greater number M
of features should provide a better discriminating power, this is not the case
for irrelevant and/or redundant features, which frequently confuse the learning
algorithm.

FSS can be formalised as follows Yu and Liu (2004): let X ′ ⊂ X be a
subset of features and f ′(x′) the value associated to instances described by
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features in X ′. The objective of FSS is to select a minimum feature subset
X ′ such that P(C|Y = f ′(x′)) ≈ P(C|y = f(x)), where P(C|Y = f ′(x′))) and
P(C|y = f(x)) are the probability distributions of the NCl

possible classes given
the feature values in X ′ and X, respectively. This minimum subset X ′ is named
the optimal subset. In this context, the FSS problem can be characterised under
two aspects: how features are evaluated, and how the feature selection algorithm
and the learning algorithm that use the selected features will interact.

Ideally, the best subset contains the least number of features that most con-
tribute for building the model, and we can discard the remaining, unimportant
features. As aforementioned, feature subset selection is generally cast as a search
problem, and several methods were developed to find the “optimal” subset. Un-
fortunately, trying all possible subsets leads to a combinatorial explosion as the
number of candidate features grows. Two main approaches are generally used to
avoid the exhaustive search Vafaie and Jong (1993). The first one is to construct
ad-hoc strategies to prune the feature space to a manageable size. The second
one uses generic heuristics (primarily greedy forward or backward hill-climbing
algorithms) when domain knowledge is costly or unavailable. As the usage of
ad-hoc approaches are constrained to a specific domain, they are of less interest
than general methods of feature subset selection.

Algorithms for feature subset selection which use generic heuristics may
be categorised as wrapper, filter and embedded approaches. The wrapper ap-
proach Kohavi and John (1997) takes into account the accuracy of the classifier
induced with a feature subset as a heuristic to guide the selection of features.
When testing to retain or discard a feature, depending on whether the search is
forwards or backwards, such a feature is retained if it improves the accuracy of
the model, otherwise it is discarded. On the other hand, the filter approach Duch
(2006) uses heuristics based on training data characteristics to select features.
The most common approach is to rank features using some quality criterion,
and filter out the lower ranked features. Finally, the embedded approach Lal
et al. (2006) is an indirect method which selects features through a learning
algorithm that internally implements some feature selection method. Thus, the
embedded approach is intrinsic to some learning algorithms, and consequently it
is restricted to specific algorithms that were projected with this characteristic.

Another approach to reduce the number of features is the elimination of
redundant features. In a general way, selection of relevant features and elim-
ination of redundant features are orthogonal approaches: the former aims to
find a feature subset with high correlation between features and the class (rel-
evance); and the latter aims to reduce the correlation among these features.
For instance, if various copies of a highly relevant feature are present in a data
set, feature selection using an importance criterion will select all of them, while
feature redundancy will eliminate all but one feature.



R. C. Prati et al., Wrapper/filter approach for FSS , EJS, 8(1) 12–24 (2008) 15

3 A hybrid wrapper/filter approach for FSS

As mentioned in the previous section, wrapper and filter are quite general pro-
cedures for feature subset selection. The filter approach is usually computa-
tionally less intensive, although the wrapper approach frequently produces the
best results Appice et al. (2004). Moreover, the wrapper approach has a greater
computational complexity, and the results are optimised to the learning algo-
rithm used as a wrapper. On the other hand, filters are very flexible methods
since any learning algorithm can use the selected features. However, unlike the
wrapper approach, there is not an established procedure to decide how many
features should be selected, and this number is left to the user as a parameter
(either by explicitly defining the number of features or specifying some arbitrar-
ily chosen threshold in the quality measure). In this work, we propose a hybrid
wrapper/filter algorithm aiming to explore the qualities of both strategies and
try to overcome some of their deficiencies.

In the standard wrapper approach, in order to select the feature to be re-
moved, for each feature in the feature set a classifier is induced using all but
the corresponding feature, and a performance metric is calculated (e.g. AUC
or error rate). The feature which leads to the lowest performance is the feature
candidate for removal. Differently from this standard wrapper approach, where
the process of selecting a feature to be removed is based on the same learning
algorithm that the wrapper is based on, we proposed to use a measure to rank
all the features. At each iteration, the lowest ranked feature is the candidate for
removal. Thus, our approach can be understood as a hybrid solution between
a filter and a wrapper approach.

The proposed wrapper uses a backward best-first search strategy and was
constructed as follows: the relevant feature set is initialised with all dataset
features. At each iteration, one feature is removed from the feature set until
a stop criterion is met. The removed feature is the one with the lowest score
given by a filter measure. The Näıve Bayes learning algorithm is applied to the
reduced feature set and if the AUC assessed in this reduced set is not lower than
95% of the AUC calculated using all the dataset features, the removed feature is
discarded and the process is repeated with the remaining features. Otherwise,
the feature is considered relevant and is included back into the relevant feature
set. In this case, the search process terminates and the relevant feature set is
returned.

The purpose of this hybrid approach is two-fold. First, this modification
saves computational time. As each state in the search space specifies a subset
of possible features, the size of the search space for M features is 2M . Thus,
even using a simple best-first search strategy, the number of runs of the learning
algorithm used to guide the search in the wrapper is O(M2). As in our approach
the features are ranked before the wrapper execution, then this number of runs
is O(M). Second, this approach overcomes the problem of previously deciding
how many features should be selected (or which threshold should be applied)
by the filter approach.

Despite these advantages, this hybrid approach introduces a bias due to the
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choice of the measure used to rank the features. The filter approach usually
uses some measure as a heuristic to guide the selection process, and numerous
measures to guide this selection are proposed in the literature. As stated earlier,
this approach is widely used since it is less computationally expensive and also
because it is independent of the learning system. However, since the search is
not exact and the measures used as a heuristic focus on some data characteristic,
it is not possible to know beforehand which measure is the most appropriate
for a given domain. To ease this problem, we propose to use a combination of
measures as described next.

4 Combining FSS methods using rankings

The filter approach uses a measure to quantify some data characteristic in the
available set of examples, and uses this information as a heuristic to guide the
search for the best feature subset. However, each heuristic emphasasis one
data characteristic, and the search might be biased by the chosen heuristic. In
this work, we propose using different measures to quantify data characteristics
which are finally combined into one measure using a simple ranking aggregation
function.

A problem that frequently arises when combining different measures is that
each of them might use a different scale. For instance, measure A assigns a rating
in the interval [0, 1], while another measure B assigns a rating in the interval
[−1, 1]. Furthermore, even though both measures use the same absolute scale,
i.e., both of them assign a rating in the interval [0, 1], relative scales might be
different. In other words, a score of 0.8 for measure A might have a different
weight if compared with a score of 0.8 for measure B.

An approach to overcome these scale issues is to consider only the rank
given by different heuristics to each feature. The proposed method, CFSS (for
Combined Filter Subset Selection), is based on this approach, and works as
follows:

• various different measures are used to evaluate each feature;

• the score given by each measure is used to rank the features. The best
evaluated feature is ranked first, the next is ranked second, and so forth.
In case of ties, i.e., two features obtaining the same score, a mean rank
is assigned. For instance, if there is a tie between two features at the
third rank position, these two features are assigned to the “mean rank”
3.5 ( 3+4

2 ).

• any set of measures of interest can be combined into a final rank by com-
puting the mean rank of each feature, instead of considering the scores of
each feature.

For instance, consider the problem of selecting two features given a set of five
features (A, B, C, D and E) and three different measures. The first measure



R. C. Prati et al., Wrapper/filter approach for FSS , EJS, 8(1) 12–24 (2008) 17

Table 1: Description of the datasets used in the experiments
Dataset Number of Number of Number of Maj. Class
name features instances classes (%)
anneal 38 (32,6) 898 2 76,2

audiology 69 (69,0) 226 24 25,2
coil2000 85 (85,0) 9822 2 94,0

crx 15 (9,6) 690 2 55,5
ionosphere 32 (0,32) 351 2 64,1

lymphography 18 (18,0) 148 4 57,4
mushroom 22 (22,0) 8124 7 51,8

primary-tumor 17 (17,0) 339 21 24,8
promoters 57 (57,0) 106 2 50,0

soybean-large 35 (35,0) 683 19 13,0
vehicle 18 (0,18) 846 4 75,0
voting 16 (16,0) 435 2 61,4
wdbc 20 (0,20) 569 3 62,7
zoo 16 (16,0) 101 7 40,6

assigns the scores (0.9, 0.3, 0.8, 0.5 and 0.2), the second measure assigns (0.7,
-0.6, 0.1, 0.4, and -0.3), and the third measure assigns (0.9, 0.1, 0.5, 0.6, 0.7).
Thus, the three measures rank the five features as follows: (A, C, D, B, E) for
the first, (A, D, C, E, B) for the second, and (A, E, D, C, B) for the third
measure. Considering the two top ranked features, the first measure would
select features A and C, the second measure A and D, and the third measure
A and E. Therefore, all three measures selected feature A. However, they
disagree regarding which feature should be selected as second. The mean rank
position for each feature is A = 1( 1+1+1

3 ), B = 4.6( 4+5+5
3 ), C = 3( 2+3+4

3 ),
D = 2.6( 3+2+3

3 ), and E = 3.6( 5+4+2
3 ). Thus, the final ranking for the proposed

approach is (A, D, C, E and B) and the selected features would be A and D.
It can be observed that feature D was ranked second for the second measure
and was ranked third for the first and third measures.

5 Experimental Evaluation

To validate our proposal, we carried out a series of experiments using 14 datasets
from UCI Newman et al. (1998). We selected datasets having at least 15 features
and without unknown feature values (to avoid a possible contamination of such
unknown values in the results analysis). An overview of datasets characteristics
is shown in Table 1. This table summarises, for each dataset, the original number
of features (as well as the number of categorical and continuous features, in this
order, in brackets), the number of instances, the number of classes as well as
the percentage of instances belonging to the majority class.

The experiments were carried out using a standard implementation of the
Näıve Bayes learning algorithm available in the Orange Data Mining frame-
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work Demšar and ang G. Legan (2004). Furthermore, all FSS and performance
measures are also used as implemented in this framework. All the results re-
ported in this paper were obtained using 10-fold cross validation with paired
folds, i.e., the same training and testing partitions were used for all compared
methods. For problems with more than two classes, the weighed one-against-all
method was used to calculate the area under the ROC curve (AUC) Fawcett
(2006)1. As some of the measures (described next) are only applicable to cat-
egorical features, continuous features were previously categorized using equally
distance cutoffs with 6 bins (also using the implementation available in the
Orange framework).

The experiments can be divided into two independent steps:

1. first, we use a hybrid wrapper/filter approach to select a subset of features
as described in Section 3;

2. we use the features selected in the previous step to build a classifier and
compute its AUC using an independent test set.

For the filter part of the hybrid wrapper/filter approach, we have experi-
mented with five measures, alongside the combination of them (CFSS) as de-
scribed in Section 4. These five measures are briefly described next.

Relevance is a measure that discriminates between features on the basis of
their potential value in the formation of decision rules Baim (1988).

Gini index is a measure of inequality of a distribution often used in economy.
It was first introduced in machine learning by Breiman Breiman et al.
(1984) as a decision tree feature splitting criterion.

Information Gain is one of the most popular measures to estimate the ex-
pected decrease of Entropy.

Gain ratio was introduced by Quinlan Quinlan (1993) in order to avoid over-
estimation of multi-valued features. It is computed as information gain
divided by the entropy of the feature’s value.

Relief was first developed by Kira and Rendell Kira and Rendell (1992) and
then substantially generalised and improved by Kononenko Kononenko
(1994). It measures the usefulness of features based on their ability to
distinguish between very similar examples belonging to different classes.

Tables 2 and 3 show, respectively, the average AUC values and the number of
selected features for the hybrid wrapper/filter approach using these individual
measures as well as their combination using CFSS to rank the features. For
the sake of visualisation, the highest AUC value (not considering the model
induced using all the features) as well as the lowest number of selected features
are highlighted in gray. In both tables, the numbers in brackets correspond to
standard deviations.

1In the weighed one-against-all method the AUC is calculated for each class taking one
class as positive and the other classes as negative. The overall AUC is the weighed average of
all these partial AUCs, using the class priors as weight.
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Table 3: Average number of selected features using the hybrid wrapper/filter
approach. The second column shows the original number of features as a refer-
ence. Numbers in brackets indicate standard deviations.

Data Set All Relevance
Gini Infor. Gain

Relief CFSS
Index Gain Ratio

anneal 38 2.20(0.52) 2.20(0.52) 2.20(0.52) 2.35(0.75) 8.80(1.51) 2.00(0.32)
audiology 69 39.45(28.11) 27.65(31.58) 31.95(31.63) 66.15(12.75) 19.35(21.92) 52.30(29.68)
coil2000 85 44.15(9.92) 1.05(0.22) 1.15(0.37) 7.55(2.37) 41.65(24.79) 2.35(1.04)

crx 15 1.10(0.31) 1.10(0.31) 1.10(0.31) 1.10(0.31) 1.25(0.72) 1.10(0.31)
ionosphere 32 4.30(6.09) 2.35(0.88) 2.35(0.88) 2.65(0.99) 8.35(5.54) 2.80(1.47)

lymphography 18 5.75(6.67) 4.70(6.84) 4.70(6.84) 6.95(6.19) 6.20(7.29) 4.70(6.84)
mushroom 22 3.00(0.00) 3.00(0.00) 2.55(0.51) 6.15(0.37) 3.85(0.37) 3.00(0.00)

primarytumor 17 3.80(1.32) 4.60(1.19) 3.05(0.76) 4.15(0.75) 3.85(1.14) 3.30(0.86)
promoters 57 3.85(12.51) 3.70(12.07) 3.70(12.07) 1.00(0.00) 1.00(0.00) 3.80(12.52)

soybeanlarge 35 4.35(0.59) 5.70(0.92) 3.15(1.42) 8.75(0.97) 12.70(3.92) 2.45(0.51)
vehicle 18 5.00(1.69) 6.60(0.88) 7.00(0.79) 7.90(1.02) 9.10(1.12) 6.40(1.43)
voting 16 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
wdbc 20 1.40(0.50) 1.10(0.31) 1.05(0.22) 1.85(0.37) 1.25(0.44) 1.45(0.51)
zoo 16 7.50(6.28) 7.05(6.28) 6.55(6.61) 6.70(6.26) 6.45(6.24) 7.20(6.78)

In general, the AUC values presented in Table 2 for the FSS methods are
slightly lower than the AUC values obtained using all the features. This re-
sult is somewhat expected as the stopping criteria used in these approaches
are quite lenient, favouring a large reduction of features despite an improve-
ment on the AUC. Observe that a feature is discarded if the AUC assessed in
the reduced dataset is not lower than 95% of the AUC calculated using all the
dataset features, as described in Section 3. Only for the lymphography dataset,
all FSS methods were able to obtain an improvement in terms of AUC. Other
improvements (although in a lower degree) were obtained for the primary tu-
mor dataset using Information Gain, Gain Ration and CFSS. In four datasets
(voting, vehicle, promoters and crx), all FSS methods performed quite similarly.

As shown in Table 3, it can be observed that the reduction in the number of
features is very high, with the average number of selected features lower than
30% of the original features with a few exceptions, as in all FSS methods for
datasets audiology and zoo and for two FSS methods (Relevance and Relief) for
the dataset coil2000.

The performance of FSS algorithms in which the aim is to reduce the number
of features for learning, must consider at least two aspects simultaneously: the
reduction in the number of features versus the quality of the induced classifier
using the subset of selected features. In other words, this evaluation is multicri-
teria. To this end, in Lee et al. (2006) an evaluation model for FSS algorithms
performance is proposed that considers accuracy as the quality measure of the
induced classifier. This model consists of a graph, where the x-axis is related to
the classifiers predictive performance and the y-axis is related to the percentage
of the selected features by the FSS algorithm. Using this model, in this work the
x-axis represents the maximum percentage of AUC degradation we are prepared
to accept considering the reduction in the number of features represented in the
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Figure 1: The multicriteria evaluation model

y-axis.
Figure 1 illustrates this performance evaluation model. Each FSS algorithm

performance is placed into five categories: excellent (FF), very good (F), good
(N), acceptable (♦) and poor (–). These categories are defined by the user as
follows: the value X in Figure 1 represents the maximum percentage of decrease
in AUC to be considered as a good result. The value Y represents the maximum
percentage of features the FSS should select to be considered a good reduction
in the number of features. Taking into account these two measures, the FSS
methods can be classified into the five categories previously listed. If there is an
increase in classification performance and a minimum reduction in the number
of features, the method is considered excellent. Otherwise, two other values X’
and Y’ falling inside X and Y range, respectively, are defined by the user so
that FSS in this X’ and Y’ rectangle are considered very good. If a FSS method
is below the line connecting X and Y although it is not inside the X’ and Y’
rectangle, it is considered good. Falling above that line but inside the X and Y
rectangle, it is considered acceptable. Otherwise, it is considered very poor.

In our evaluation, X was set to 5% (i.e., we considered it would be acceptable
up to a maximum reduction of 5% of the AUC using all features) and Y was set
to 50% (i.e., we considered it would be acceptable any method that uses at the
most half of the features). Thus, all FSS methods that select at most 50% of
the original features and improves the original AUC were considered excellent.
Furthermore, X’ was set to 2.5% and Y’ to 25% so that all FSS methods that
selected at most 25% of the original features and the AUC values decreased at
most 2.5% were considered very good, and so forth.

Table 4 summarises our results using this multicriteria evaluation model.
Except for datasets audiology and promoters, for which results were considered
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Table 4: Summary of the results using the multicriteria evaluation model

Data Set Relevance
Gini Infor. Gain

Relief CFSS
Index Gain Ratio

anneal N N N N N N
audiology – – – – – –
coil2000 – N N N ♦ F

crx F F F F F F
ionosphere N N N N – N

lymphography FF FF FF FF FF FF
mushroom N F N N N F

primary-tumor F N FF FF FF FF
promoters – – – – – –

soybeanlarge N F N N N N
vehicle N N N ♦ – N
voting F F F F F F
wdbc N N N N N N
zoo ♦ ♦ ♦ ♦ N ♦

poor for all FSS methods, the other datasets presented satisfactory results. In
particular, excellent results were obtained for dataset lymphography for all FSS
methods and for dataset primary tumor for four out of six FSS methods. In
general, all FSS methods presented a similar behaviour although CFSS presents
the largest number of excellent and very good rates.

6 Concluding Remarks

This paper presented a hybrid wrapper/filter approach for the feature subset
selection problem. This hybrid approach can use different measures to quantify
data characteristics which are combined into a single measure using a ranking
aggregation function. This hybrid approach aims to save computational time
(as pure wrapper approaches are generally computationally expensive) as well as
automatically selecting an appropriate number of features (as pure filter based
approaches do not present this characteristic).

The approach was validated on 14 datasets from UCI. Results show that, for
most of the datasets, this hybrid approach is able to achieve a good reduction
in the number of features as well as keeping the AUC comparable to the AUC
of the model constructed using all the features in the dataset

As future work, we plan to investigate other ways to set the minimum AUC
value used as stopping criterion in our hybrid wrapper/filter approach. For
instance, we can include a statistical test to decide whether a reduction in
AUC performance is significant or not. In other words, the algorithm continues
removing features while this reduction of performance is not significant. We
also plan to compare our approach with other hybrid approaches proposed in
the literature, such as Zhu et al. (2007); Das (2001).
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