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Resumen. En zonas agrícolas, las variables asociadas al suelo que más contribu-

yen al coeficiente de retrodispersión SAR son la rugosidad y la humedad volu-

métrica. Dado que desacoplar los efectos de ambas suele ser complejo, en este 

trabajo proponemos una metodología para caracterizar la rugosidad de suelo, en 

particular para aplicaciones SAR, en zonas agrícolas. Los métodos tradicionales, 

como la utilización de perfilómetros o tablas graduadas suelen ser poco prácticos, 

muy laboriosos y limitados a mediciones unidimensionales. Existen otras tecno-

logías, como los láseres, pero son inaccesibles a los fines prácticos por razones 

económicas y técnicas. En este trabajo proponemos una metodología basada en 

técnicas fotogramétricas avanzadas utilizando mayoritariamente paquetes de 

software educativos. Evaluamos la metodología propuesta sobre dos zonas piloto 

representativas (de aproximadamente 1 m2); una con un patrón superficial alea-

torio y otra donde simulamos surcos a distancias de laboreo agrícola típicas (52 

cm.). Como resultado se obtuvieron modelos digitales de las superficies de alta 

resolución, que permitieron estimar los valores de las variables usualmente utili-

zadas en el entorno SAR para caracterizar la rugosidad superficial como son el 

desvío standard de la altura o altura rms y la longitud de correlación. Además, se 

diseñó una metodología para obtener, a partir de los modelos digitales de super-

ficie, medidas de rugosidad multiescala a través del análisis de Fourier. Los pro-

misorios resultados de esta metodología simple y de bajo costo, estimamos, per-

mitirá obtener información precisa de la rugosidad de suelo para el desarrollo de 

aplicaciones SAR en el contexto de las misiones Argentinas SAOCOM.  
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Abstract. Soil roughness and volumetric moisture are the two main soil-related 

variables influencing the SAR backscattering coefficient. Since it is usually chal-

lenging to decouple the effect of each, in this work, we propose a methodology 

to estimate soil roughness, mainly in agricultural environments. The traditional 

methods, using graduated tables and profilometers, are laborious and spatially 

limited. The use of lasers is feasible, but they are normally inaccessible. This 

work proposes a methodology based on photogrammetric techniques using pri-

marily educational software. We tested the method over two bare soil 1m2-areas, 

one with a random surface pattern and another where we simulated typical crop 

rows (52 cm apart). As a result, highly accurate surface three-dimensional digital 

models were obtained. We then extracted the standard deviation of the surface 

height and the correlation length, the main roughness parameters required in SAR 

modeling. Additionally, we were able to extract other relevant information, such 

as the predominant spatial structure directions and height profiles from the auto-

correlation function and the multiscale roughness through Fourier analysis. 

Given the excellent results of this fast and low-cost methodology, we estimate it 

could provide precise and systematic information on soil roughness for opera-

tional applications in the SAR context in view of Argentina's SAOCOM mis-

sions.  

Keywords: Soil roughness, SAR, photogrammetry, multiscale roughness. 

1 Introduction 

Estimating surface roughness for extensive agriculture applications can be complex due 

to the varying sizes and spatial variability of agricultural plots. Some traditional meth-

ods available to accomplish this task include graduated tables or a profilometer. How-

ever, these methods are invasive and can be time-consuming, localized, and limited to 

one dimension. On the other hand, non-contact techniques like lasers and acoustic sig-

nals are costly and not easily accessible. Remote sensing data can also be utilized, but 

it requires extensive calibration and depends on the image's characteristics and scale. 

Photogrammetry-based techniques have emerged as a promising methodology for la-

boratory or field studies, assuming a certain level of proficiency in this method [1]. 
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SAR data portrays a physical magnitude, the backscatter coefficient (σ0). In agricul-

tural areas, this coefficient can be influenced by factors such as soil conditions and the 

characteristics of vegetation cover.  Surface roughness and volumetric moisture signif-

icantly affect soil backscattering. These variables are often intertwined, making it dif-

ficult to distinguish their individual effects. As pointed out by [2], another aspect to 

consider is that natural surface roughness consists of continuous roughness scales. 

Since most SAR sensors' operational wavelengths () usually range from a few centi-

meters to tens of centimeters, a centimeter-scale roughness measurement is commonly 

used for SAR scattering modeling. However, a better understanding of the surface scat-

tering process could be achieved if several scale roughness could be obtained. For ex-

ample, [3] proposed a dual-scale surface roughness that they could relate to seedbed 

rows and wheel tracks of the machinery used. Also, the issue of the influence of the 

spatial sampling interval in the microwave response of agricultural surfaces is ad-

dressed by [4]. 

Argentina has developed the SAOCOM missions, which include two L-band Syn-

thetic Aperture Radars (SARs) that operate at a wavelength  () of 23.5 cm. Since Ar-

gentina's economy heavily relies on agricultural products grown over vast areas of land, 

these missions primarily focus on applications related to agriculture [5]. The two SARs 

form a constellation with four COSMO-SkyMed (CSK) Italian Space Agency satellites 

operating at the X Band (= 3.1 cm). This setup enables data to be gathered at varying 

frequencies close in time over the same study area. Combining SAR data at different 

bands presents a unique opportunity to gain insights into the complex interplay between 

agricultural variables since the interaction between the incoming waves and the earth's 

surface elements is wavelength-dependent. 

Thus, this study aimed to assess a technique for surface roughness characterization 

on typical agricultural soils based on digital surface models (DSMs) derived from pho-

togrammetric methods. The main objective was to develop a reliable, accurate, user-

friendly, and cost-effective method. 

2 Methodology 

2.1 DSM generation and evaluation 

To carry out the methodology, we selected two pilot areas, each measuring approxi-

mately one square meter (1 x 1.02 meters). In the first plot, the soil was left undisturbed, 

while in the second plot, we replicated the conventional rows typically used for summer 

crops in central Argentina, such as soybeans, maize, and sunflower. The rows were 

positioned at a distance of 52 cm from one another and had an average height of 10 cm, 

as illustrated in Figure 1.  
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Fig. 1. Study areas (approximately 1m2 each). The undisturbed soil is on the left image, and the 

simulated crop rows are on the right. 

 

We utilized a frame with known dimensions and added external elements, also known 

as phantoms, to facilitate the alignment of images and scale the models obtained. In the 

course of the experiment, we made use of phantoms consisting of wooden rods with 

established dimensions. We captured about 100 images for each surface using a 12 MPx 

compact digital camera, employing methods similar to those previously tested on vari-

ous artificial surfaces [6]. The approach involved taking photos from different angles 

at varying heights up to 1.20  m approximately and also a set following a regular ideal 

grid pattern with the camera positioned perpendicular to the ground. It's worth noting 

that no GPS or geolocation data is needed to be collected for the camera positions. A 

schematic diagram of the ideal camera positions is in Fig. 2 (a), and in Fig. 2 (b), actual 

camera locations for one of the study areas.  

 

  

 

Fig. 2. (a) Ideal acquisition setting and (b) Actual acquisition pattern  

The digital surface models were created using advanced photogrammetric techniques 

that rely on structure from motion [7]. Different fields of study utilize this method [8]. 
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Specifically, previous studies such as those by [9] and [10] have applied it to analyze 

surface roughness.  In contrast to conventional photogrammetry techniques, this 

method greatly simplifies reconstructing a 3D surface due to the automatic acquisition 

of the camera's position and orientation throughout the process, enabling greater flexi-

bility in acquisition patterns without requiring the measurement of the camera's position 

and angle for every shot. 

We used Autodesk©'s RecapPhoto© software's cloud-based educational version to 

generate the DSMs. Fig. 3 showcases several photos captured of the simulated crop 
rows area. One photo offers a partial view near ground level, another features a diagonal 

view at a medium height, and the third presents a full view with the camera facing 

downward. These pictures were utilized in their original form without additional trim-

ming or conditioning. One of the software's interesting capabilities is its insensitivity 

to external objects (like the trees seen in the first photo) or shadows produced during 

the data collection. The software automatically selects the best images for the final re-

construction from those uploaded by the operator.  

 

 

   

Fig. 3. Sample photographs 

 

After completing the online processing, we downloaded the DSMs to the local inter-

face. We then clipped, aligned, and scaled the models. Lastly, we exported the clouds 

of points (x,y,z) in tabular form and generated raster images for further analysis. 

To ensure consistency, a second DSM of the random surface was created using the 

same set of photographs and compared to the first model because a-priori, the method 

does not ensure repeatability when applied to the same data set. 

We analyzed the relative error (ε) using Equation (1) to assess accuracy. It was cal-

culated using established dimensions as references, such as phantom sizes and frame 

measurements.  

 𝜀(%) = |𝑑𝑚𝑜𝑑−𝑑𝑟𝑒𝑎𝑙|𝑑𝑟𝑒𝑎𝑙 × 100 (1) 

                                   

Where dmod and dreal are the measurements performed on the models and the actual sur-

faces respectively.   
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2.2 Surface roughness parameters estimation 

In SAR applications, surface roughness is typically described by two statistical param-

eters: the standard deviation (s) of the surface height from a reference height or rms 

height and the correlation length (l), which indicates the surface's periodicity [2]. The 

latter is defined as the distance at which the normalized autocorrelation function (ACF) 

decays to 1/e [11] and is an estimate of the statistical independence between two points 

on the surface; if they are separated by a distance greater than l/e, then they can be 

considered statistically independent. In the limiting case of a specular surface, l tends 

to infinity.  

The calculation of the standard deviation of the surface height is a straightforward 

process based on the DSM height values. Regarding the autocorrelation length, the ap-

proach involves segmenting the two-dimensional ACF [12]. The ACF is an image with 

the same size as the original, and each pixel value is related to the degree of correlation 

between the original image and a displaced version in all directions. The ACF reaches 

its maximum value at the center of the image, where there is no displacement. When 

the image contains isotropic structures, the ACF shows a similar decay rate in all direc-

tions. However, when the picture exhibits anisotropic patterns, the decay rate may dif-

fer, resulting in elongated contour lines in the direction of the greatest correlation. 

Based on the method used in [13], we established the cut-off point for determining the 

correlation length at 0.4 (~1/e) of the maximum value of the normalized ACF. We used 

ellipses to approximate the isolines in this scenario, as they do not typically correspond 

with known geometric shapes. The minor and major semi-axes of the ellipses were then 

used to estimate the minimum and maximum autocorrelation lengths, respectively. 

It is also essential to determine the orientation of surface patterns (e.g., crop rows) 

because, based on the SAR incident angle, interference patterns (such as Bragg scatter-

ing) may appear in the images. The 2D ACF of the DSM can also be employed to 

estimate the average size and orientation of spatial structures. This technique has been 

applied at various scales, like determining the size of grains in materials [14] or esti-

mating the average size and shape of topographic structures [15].  

 

 

2.3 Multiscale roughness 

Fourier analysis was used to extract multiscale roughness measurements, a technique 

widely used in signal processing and electronics for signal filtering [16]. In a  Fourier-

transformed image, its entries depict the spatial frequency components of the original 

image, both horizontally and vertically. Spatial frequency is akin to time-frequency for 

a signal; a high-frequency sinusoidal function oscillates rapidly, while a low-frequency 

function changes gradually with time. Similarly, an image with high spatial frequency 

displays frequent changes in brightness. A typical image comprises vertical and hori-
zontal components of varying strengths, each with different spatial frequencies. These 

components are precisely what the discrete Fourier transform characterizes. In the pre-

sent study, we have straightforwardly estimated different roughness scales through the 

frequency domain analysis.  
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The raster format DSMs were converted into the frequency domain using the Fast 

Fourier Transform (FFT). We used [18] for the Fourier analysis, and the post-pro-

cessing and analysis were performed in [17]. This conversion process transforms the 

image into a series of two-dimensional sine waves of different frequencies. A complex 

number represents each resulting pixel once an image is transformed into its frequency 

domain. For visualization purposes, the magnitude of each complex number is calcu-

lated, and the dynamic range is adjusted accordingly. The FFT magnitude image is rep-

resented in a new coordinate space (u,v) related to the frequencies. The sampling incre-

ment in the frequency domain (∆u, ∆v) is related to the pixel size in the spatial domain 

and also to the size of the original image as follows: 

 

(∆u, ∆v)= ( 1𝑀∆𝑥 , 1𝑁∆𝑦)  (2) 

 

Where 

M = horizontal size in pixels of the original image. 

N = vertical size in pixels of the original image. 

x, y  = pixel size in the spatial domain in the x and y directions. 
 

The new image is symmetric about its origin (u, v) = (0, 0), located at the center of the 

image. Then, lower frequencies are plotted near the origin, while higher frequencies are 

plotted further out. 
Once in the frequency domain, the spectrum was subdivided into three subsets em-

ploying low and high pass filters. In the Fourier domain, the filtering process is straight-

forward and usually faster than applying convolution filters in the spatial domain. For 

the low-pass operation, for example, once the cut-off frequency (D0) is selected, the 

filtering process only leaves those frequencies that comply with u2+v2 < D0
2; that is, 

those pixels within a circle of radius D0 in the (u,v) space [18]. Similarly, the high-pass 
filtering was performed. The criteria for the selection of D0, in this case, was based on 

the spectrum statistics.  
It should be mentioned that the number of intervals and cut-off frequencies can be 

arbitrarily selected to fulfill different objectives for any given application.  
Each frequency domain subset was then converted back into the spatial domain 

through the Inverse FFT (IFFT).  

Finally, three raster images of the surfaces were obtained: one showing the large-

scale undulation of the surface (low frequencies), another for the medium-scale rough-

ness, and the last one associated with the high-spatial frequency variations of the sur-

face height. 
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3 Results  

3.1 DSM 

The resulting DSMs that have been scaled and cropped to remove any interference from 

the borders and phantoms are shown in Fig. 4. They are presented in both rendered and 

raster versions. Short videos of both models can be found in [19] for the random sur-

face, and for the simulated crop rows model, please go to [20]. In both cases, increasing 

the visualization resolution on YouTube is recommended for better results. 

 

 

 

 

 

 

 
  

 

Fig. 4. Resulting DSMs, on the left, the one corresponding to the random surface, and on the 

right, the surface simulating crop rows.  

 

After conducting the accuracy assessment for 10 measurements on each DSM, it was 

found that the relative error in all cases was less than 2%, consistent with previous 

results obtained using a similar methodology for artificial surfaces [21]. Furthermore, 

upon analysis of a second DSM generated from the same data set (for the random sur-

face), it was found that the method was robust, with differences between the two DSMs 

being less than 2.5%. 
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3.2 Surface roughness parameters estimates 

The data was post-processed and resulted in raster images shown in Fig. 5 and Fig. 6. 

Each pixel in the raster images corresponds to the digital model height value. A transect 

was also traced in both figures, and the associated height profiles are depicted below 

the raster images.  

The rms height values were 0.9 cm for the first surface and 1.7 cm for the second. 

Also, the corresponding ACF functions are shown. The central area indicates where 

the maximum ACF is observed and corresponds to a null displacement of the raster 

image. The 0.4 contour lines are also presented, which indicates the typical size of the 

structures in the terrain.  

For the random surface (Fig.5), the image shows a slight deformation in the vertical 

direction associated with the semi-major axis of the ellipse. However, it is essential to 

mention that the origin of the coordinate system was arbitrarily established in one of 

the corners of the frame used to delimit the area of interest, so it does not make physical 

sense.  

 

 

Fig. 5. Raster image of the random soil sample and corresponding ACF.  

 

By approximating the isoline with an ellipse, the values corresponding to the major and 

minor semi-axes were extracted from the graph, resulting in 11.4 cm and 6.7 cm, re-

spectively. These values are indicative of the maximum and minimum correlation 

lengths. 

For the other surface (Fig. 6), the minimum and maximum l were 7 cm and 23 cm, 

respectively. The orientation with respect to the horizontal was estimated at approxi-

mately 37.5°. In the image of the ACF, the impact of the spatial pattern of rows can be 

observed as it leads to an increase in the autocorrelation values in the labeled areas A 

and B. 

Mieza et al, Fotogrametría para la caracterización de rugosidad superficial en aplicaciones SAR, EJS 23 (2) 2024 pg 43-58 51

ISSN 1514-6774



 

 

Fig. 6. Raster image of the simulated crop rows surface and corresponding ACF.  

 

3.3 Multiscale roughness 

The proposed methodology for extracting multiscale roughness was implemented for 

the soil sample with the simulated crop rows, as shown in Fig.7(a). Firstly, the FFT was 

applied, and its magnitude was calculated, as shown in Fig. 7 (b). The FFT magnitude 

and its corresponding histogram reveal varying frequencies within the image. The lower 

frequency could be related to coarser roughness scales, while the high frequencies are 

related to finer scales.  

Moreover, the transformed image brings attention to two main directions in the Fou-

rier image: one runs vertically and the other horizontally through the center. These di-

rections stem from regular patterns in the original image's background that may not be 

evident in the spatial domain.  

Then, in the frequency domain, the filtering process was applied based on these cri-

teria: values below the mean () minus one standard deviation (SD) (D0 <  - 1SD) 

were filtered for low frequencies. Values ranging from the mean minus one standard 

deviation to the mean plus one standard deviation ( - 1SD  D0    + 1SD) were 

retained for medium frequencies. The associated histogram and statistical parameters 

are shown below the FFT magnitude image. High frequencies were identified as values 

above the mean plus one standard deviation (D0 >  + 1SD) and were filtered accord-

ingly. Fig. 7 (c) shows the resulting FFT magnitude image after applying the low-fre-

quency filter.  
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Fig. 7. (a) Raster image of the DSM with crop rows, (b) FFT magnitude of the image in (a) and 

associated histogram, and in (c) FFT magnitude after low-frequency filter was applied. 

 

After applying the three filters, the IFFT converted each filtered FFT magnitude image 

back to the spatial domain. Figure 8 (a) represents the original DSM, while (b), (c), and 

(d) represent the filtered images back in the spatial domain for low, medium, and high-

frequency spectrums, respectively. Additionally, the height profiles for the white tran-

sect at equivalent locations are presented for all images. The original profile can be 

considered a combination of the three profiles exhibiting different roughness scales. 
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Fig. 8. (a) Height profile for the transect line in the original DSM with crop rows. (b),(c) and 

(d)  Height profiles for the low, medium and high frequency roughness components. 

 

4 Discussion 

This study is part of a larger project that focuses on modeling the backscattering coef-

ficient of crops in central Argentina. The study area is located in NE La Pampa, where 

no-till practices are primarily used for crop cultivation, resulting in soil roughness pat-

terns within the range of the pilot studies presented in this work. Increasingly, farms 

are adopting precision agriculture techniques. While the degree of adoption varies 
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among producers, it is typical to identify three management zones within each plot 

where variable seed and fertilizer rates are applied. 

Analyzing different scenarios through modeling is essential in utilizing SAR data 

effectively since several factors, including vegetation canopy geometry and moisture, 

area coverage, leaf area index, soil roughness, and moisture, influence the backscatter-

ing coefficient. Our ultimate goal is to create practical applications that can be utilized 

in the future, especially at the plot level. 

The main objective of the work presented here was to measure the soil roughness, 

which was proven to be a challenging variable using the available methods, especially 

the autocorrelation length. 

Understanding and modeling the effect of the soil in SAR backscatter is essential at 

the L Band (SAOCOM sensors) since, given the relatively large wavelengths, even with 

well-developed crops, radiation can penetrate the canopy and interact with the soil. 

The results pleasantly surprised us, as they exceeded our expectations regarding ac-

curacy, robustness, and simplicity.  

When discussing the estimation of surface roughness, the possibility of using data 

obtained by Unmanned Aerial Vehicles (UAVs) may come up. While we did not con-

duct the experiments ourselves, it is important to note some limitations when collecting 

data with UAVs for roughness scales of this nature. Our experience with various sur-

faces indicates that images taken close to the ground are crucial to ensure the accuracy 

of the reconstruction. However, the effectiveness of UAVs at these low heights, which 

are generally only a few centimeters, can be questioned. 

Undoubtedly, field measurements, particularly in remote sensing applications, pose 

certain challenges. Still, one of the main advantages is that only the photographs need 

to be taken in the fields, allowing multiple samples to be collected quickly by one or 

more teams.  

Unfortunately, our experiment did not allow for the collection of more precise data, 

such as laser scanning, to compare the final roughness estimates, and the profilometer 

was deemed unsuitable due to its one-dimensional nature, its potential to alter the actual 

height during the measuring process, and its coarser resolution. However, we plan to 

compare this method with a 3D reconstruction of the surfaces using a newly acquired 

Artec3D scanner. This scanner boasts a nominal 3D resolution of up to 0.2 mm [22]. 

Roughness is not an absolute concept. In particular, a surface can be considered 

smooth or rough in SAR applications depending on the incoming wavelengths. The 

Fraunhofer roughness criterion that relates the rms height with the SAR wavelength () 

and the incidence angle () is usually used to quantify this. A surface, then, can be 

considered smooth if it complies with equation 3: 

 

s < λ32 cos θ  (3) 

 

Then, not all roughness scales are essential for all SAR images [2]. If we were to ana-

lyze the surfaces with SAR images, the various roughness scales, such as those in Fig. 

8, would contribute differently to the backscattering coefficient. For example, Fig. 8 
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(b) represents the original surface's coarse roughness patterns. This new surface can 

also be characterized by its rms height and autocorrelation lengths that we denominated 

(sb, lb). Then, the surface would appear flat for wavelengths longer than sb and lb since 

no incoherent scattering occurs. As the wavelength is shortened so that it approaches 

the dimensions of sb or lb, incoherent scattering appears, but the shorter scales Fig. 8 (c) 

and (d) do not play a significant role. Subsequently, the higher spatial frequencies con-

tribute to the scattering process as the SAR wavelength is further reduced. 

Finally, in the realm of Synthetic Aperture Radar (SAR) modeling, it is common 

practice to rely on a limited set of values for the root mean square (rms) height and 

correlation length parameters. The DSM's spatial dimensionality provides new oppor-

tunities to integrate more information into physical models. 

 

5 Conclusions 

In this paper, we demonstrate how photogrammetric techniques can be used to create 

3D models of two usual surfaces found in agricultural settings to estimate surface 

roughness in the context of SAR applications. One surface has a random pattern, while 

the other simulates crop rows.  

The digital models obtained are photo-realistic; if compared with photographs, in 

many cases, they are indistinguishable. The quantitative evaluation was consistent with 

the qualitative one, with a relative error of less than 2%. The method proved to be 

robust, with consistent reconstruction results from the same set of photos. 

The method employed enables the determination of the required surface roughness 

parameters for SAR, namely the rms height and correlation length. 

The acquisition of multiscale roughness measurements from surface structures rep-

resents a challenging task that is not easily achievable with conventional methods. 

Through Fourier analysis, an efficient methodology is presented for disentangling var-

ious roughness components in surface structures, resulting in a highly accurate repre-

sentation of surface topography. 

To accurately model roughness over larger areas, we plan to conduct more field-

level studies to evaluate the methodology under different roughness conditions and an-

alyze variability within individual fields or regions. 

The results are satisfactory, and the method's simplicity, robustness, and low cost 

make it highly applicable for characterizing surface roughness in various fields, includ-

ing SAR and other knowledge areas.  
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