

SADIO Electronic Journal of Informatics and

Operations Research
http://www.sadio.org.ar

vol. 10, no. 1, pp. 53-67 (2011)

The Role of Agreement Technologies in the
Definition of Adaptive Software Architectures

 J. Santiago Pérez-Sotelo1 Carlos E. Cuesta2 Sascha Ossowski1

1 Centre for Intelligent Information Technologies (CETINIA)
Rey Juan Carlos University
28933 Móstoles (Madrid), Spain
e-mail: {josesantiago.perez, sascha.ossowski}@urjc.es

2 Kybele Research Group
Dept. Computer Languages and Systems II
Rey Juan Carlos University
28933 Móstoles (Madrid), Spain
e-mail: carlos.cuesta@urjc.es

Abstract

The growing complexity of software systems is causing a re-conception of their
development and maintenance strategies. Humans should be relieved from an
important part of these tasks, which should be performed by systems themselves,
leading to consider self-adaptation as a basic architectural concern.
Simultaneously, Multi-Agent Systems (MAS) have been developed as a generic
approach to solve complex problems. They describe self-aware structures,
conceived to be flexible and to be able to adapt to different situations. Advances
approaches use organizations to provide further structuring, taking the form of
complex agent architectures. Among them, Agreement Technologies (AT)
provides an explicit insight into those architectural abstractions. However, they
still do not provide mechanisms to change their composition patterns and element
types, which are necessary to achieve real self-adaptivity. In this article, we
propose an architectural solution for this: the required dynamism will be
supported by an emergent agreement - an evolving architectural structure, based
on combining predefined controls and protocols. These are handled in the context
of the service-oriented, agent-based and organization-centric framework defined
in AT and provided by their implementation within the THOMAS platform. This
work provides the first architectural abstractions to support this emergent
structure. A real-world example showing the interest of this approach is also
provided, and some conclusions about its applicability are finally outlined.

Keywords: Self -adaptivity, Adaptive Architecture, Multi-Agents
Systems, Agreement Technologies, Dynamic Architecture

Pérez-Sotelo et al., The Role of Agreement Technologies in the Definition of Adaptive…, EJS 10(1) 53-67 (2011) 54

1 Introduction

It is well known that in recent years the software systems have grown in complexity. This level of complexity,
which we could call “social” according to [14], is forcing software designers to rethink the strategy for
handling it. Many routine tasks previously deferred to human users are now being handled by systems
themselves; including many actions related to the systems own functions. Complex systems are now able to
observe themselves, and to adapt its structure and behaviour as necessary. Therefore, this approach [18] has a
global influence on the system, at many levels, leading us to consider self-adaptation as a basic architectural
concern [19]. Simultaneously, Multi-Agent Systems (MAS) have been developed as a generic approach to
solve complex problems. They describe self-aware structures, with learning capacity and conceived to be
flexible and to be able to adapt to different situations. Advances approaches use organizations to provide
further structuring, taking the form of complex agent architectures. However, existing structures still have
limitations in order to reach actual self-adaptivity, i.e. not only having the capability of affect their settings,
but also their own composition or element types. Our approach intends to go beyond more “classic” agent
technologies and propose a solution based in Agreement Technologies [1] [24] to tackle the dynamism.

This article is organized as follows: in the second section a motivating example with two scenarios is
presented to illustrate main ideas and the proposed approach, which is defined as service-oriented,
organization-centric and agent-based. Next section discusses the core of our approach, in which an adaptive
architecture emerges within a MAS context, and some references to related work are presented. The following
section presents the concept that supports the structure of these technologies, the agreement structure itself,
which is defined as crosscutting five conceptual layers, and comprises the basis of Agreement Technologies
[1] [24]. The agreement structure is also built-in to define the THOMAS framework [3], which implements its
concepts and features, and supports further developments and experiments. This is described in section 4, as
well as its evolution. Afterwards, the paper discusses the concepts and mechanisms which must be layered on
top of THOMAS, to be able to generate the structures able to define emergent organizations and ultimately,
adaptive architectures. The first scenario of the motivating example is then re-examined in the context of the
framework, to provide a glimpse of the way in which it would implement these adaptive features. Finally,
some conclusions are drawn and further lines of work are outlined.

2 Motivating Example: Two Scenarios

In order to illustrate the situation in which an adaptive architecture would be the best solution to solve
complex problems , this section presents a motivating example describing two scenario s from the medical
emergencies domain. This example is hypothetical but based in real situations, which are related to a
demonstrator currently under development in the AT project [1]: m-Health (mobile -Health). Although the
proposed scenarios are closely-related to medical emergencies, they may apply to any crisis . The mHealth is
an evolutionary prototype currently under development with the cooperation of SUMMA112 [34]. This entity
manages the medical emergencies in the Autonomous Region of Madrid, Spain. More details about
supporting medical emergencies by using standard MAS can be found in [8].

Scenario 1. There is an emergency (E1) in the system, which then has to evolve to simultaneously react to a
second one (E2).

E1. There is a fire in a large urban park situated west of central Madrid, which contains a big leisure area.
There are about 500 people at that moment. About 65 people present symptoms of asphyxia, and due to
climate and wind, the fire is extending to adjacent areas at a very fast pace. SUMMA112 receives information
related to this emergency (E1) and decides that 5 ambulances and one helicopter are needed. The coordination
with Fire Department and Police is urgent in this situation. These entities inform that they will send 3 fire
trucks and 5 police cars, respectively. From an organizational approach all these elements form an
organization, O1. Considering these scenario as a MAS environment, each actor maps onto an agent. So, 14
agents are interacting in the organization O1. Each agent has its role, goals and plans inside the organization.
Also, every organization has its norms and protocols, which make it able to function and operate to solve the
emergencies.

Pérez-Sotelo et al., The Role of Agreement Technologies in the Definition of Adaptive…, EJS 10(1) 53-67 (2011) 55

E2. An hour later, there is a car crash (namely E2) in a road tunnel near to the E1 location. 7 cars have
crashed and initially, 2 of them are on fire. SUMMA112 decides that this emergency requires 3 ambulances
and they must contact hospitals near the area. After coordinating with Fire Department and Police, they
decide to send one fire truck and 3 police cars. Again, all these (initially 7) elements form a second
organization, O2.

This scenario can be solved using two alternative solutions:

− Deal with O1 and O2 as separate elements (organizational units), with no relation between them; or

− Deal with O1 and O2 as units with some degree of relationship.

The second one is the most efficient and sensible approach, as it must have into account potential interactions
between both emergencies. So, let’s consider first O1, where all elements interact in a coordinated way to
tackle the emergency E1. But at the time to assign resources to E2, O2 is not considered in isolation from O1.
Some resources that previously were mapped onto O1 now can be mapped on O2. This situation is feasible
because the conditions in emergency E1 may have changed during the last hour. This process of re-mapping
implies a reconfiguration of unit O1, i.e. an agent’s reorganization within the O1O2 composite.
Methodologically, some services that were provided by O1 are no longer required to solve E1, and are now
re-mapped onto O2. Taking into account the results (or some kind of metrics) in O1, for example, the system
decides if one of the fire trucks is not necessary for E1 anymore, and can be assigned to E2. The same
decision can be made about 2 ambulances and 2 police cars. These decisions are efficient also because both
scenarios are close to each other. This also can be seen, in other words, as if O1 gets split in two
organizations: one of them continues in E1, while the other starts working for E2. Additional elements are
also assigned to E2 (as described above, it would require an ambulance and a police car). The original O1,
now with a smaller set of elements, continues working in E1; and a new agreement is created around E2,
defining the O2 organization. At the same time, a larger arrangement is created encompassing both units. The
whole system would continue adapting to changes in both emergencies, even possibly reassigning its elements
again if necessary.

Scenario 2. An organization is already working in the crisis area. One of its essential services (provided by an
inside organization, or even an agent) is no longer provided. This can be caused by different reasons, e.g. the
agent/organization is urgently required in another emergency, or it can not reach the area due to lack of
resources, etc. Given that the organization must first detect that the agent is not available and then finds an
alternative solution, replace the essential service by a similar one, for example.

It is clear that organizations are dynamic in both scenarios. Therefore, it is necessary to modify their
structures, configurations and coordination. Particularly in an agent-oriented environment, the goal is to
achieve an automatic reconfiguration. The system must carry out a series of evolutionary steps until it finds
an optimal point. This can perfectly be a continuous process, as the situation itself evolves. This example
justifies why this behaviour could not be completely pre -designed; it should be emergent and the coordination
should be achieved inside the architecture, which is essentially a service ecosystem (i.e. a set of services
which were separately created but must interact and coordinate within a certain context).

The following sections present concepts and tools that have been developed in order to define the foundations
of a solution, and to validate our approach.

3 Towards an Adaptive Agent Architecture

The concept of agent has evolved, and nowadays MAS are increasingly popular in Artificial Intelligence as an
effective way to solve complex problems. Different development strategies have been proposed in order to
make them flexible and to coordinate themselves in order to adapt to changing environments. However, it is
believed that MAS have not had a lot of success in the industry [12] [35], probably due to a different
development culture.

The proposed approach is to bridge this gap using service-oriented concepts, which are also popular in
industry. Moreover, if this approach demonstrates also the desired self-adaptive capabilities, it will fulfil MAS
original promise: to guarantee that the system is able to adapt to changing conditions in the problem to solve.

Pérez-Sotelo et al., The Role of Agreement Technologies in the Definition of Adaptive…, EJS 10(1) 53-67 (2011) 56

The architecture that gives support to the model has been defined both as open MAS and also as a service-
oriented, organization-centric, agent-based architecture. In the following, we will briefly describe the basic
layout defined by this architecture, to later extend it to be able to describe emergent structures, describing an
actual self-adaptive (still service-oriented, still agent-based) architecture .

3.1 A Service-Oriented, Agent-Based Architecture

As already noted, the proposed approach is based on service-oriented concepts, which are popular in industry.
Although services technology (SOA, in particular) is established and has various standards [6] [9] [13] [20];
its methodology and influence on other paradigms (such as agent-oriented architectures) is still under
development. The feature service discovery provides some flexibility to a service-oriented architecture, but
these are strongly bound by their semantics and choreographies. Mashups (or web application hybrids) can be
considered as exceptions, but they still mean ad-hoc solutions [21].

Since the proposed environment must be truly flexible and dynamic, it requires the use of rich semantic and
highly technological capabilities. Therefore, we consider a wise use of agents in a broader context, with an
upper layer of services added to provide, in particular, the interoperability feature. It is easy to conceive a
service as a way to present the operational capabilities of an agent or, even better, a collection of agents as an
organization , which in turn provides services. A certain implementation could define this platform as a SOA,
built on top of supporting MAS.

Using agents allows us the explicit treatment of semantics, a structured coordination , the use of a
methodology to service development, to structure them into organizations, and the use of their learning
capacity, among others features.

At this point, we can propose a research agenda in three phases:
1. The definition of a general platform to identify the underlying agent-based, service-oriented and

organization-centric architecture, leading to the essential platform for Agreement Technologies;
2. The introduction of further structure, to make it adaptive;
3. The identification of the generic adaptive structure for organizations, in the form of the agreement

construct, and its evolution.
The central notion is that of a service, the basic component of the architecture is the agent, and the structure
gluing all this together is the organization, conceived as a hierarchic, recursive composition of agents.
Implicit in the definition of MAS is the need to register agents in the system, to separate those ones who
belong to the architecture from those who do not. The same approach will be used to identify services. To
allow their external access, they will be explicitly registered and grouped as part of a service. This service
could be later discovered by other entities within the distributed registry of the system.

3.2 Related Work: the Role of Coordination

It is perhaps better to consider coordination previously to adaptability. From an MAS-centred point of view,
the consequences of coordination can be understood as a global influence. This can be a “shared” plan [31] or
the combination of individual plans (a “multi-plan”) [23]. In few words, when using MAS as a software
solution, the problem of coordination is always present, and as a consequence, adaptability is also
compromised.

A coordination model should cover the issues of creation and destruction of agents, their communication, and
spatial distribution among them, as well as synchronization and distribution of their actions over time [10]. In
a coordination system the components are entities (also called coordinables, whose interactions is ruled by the
model); media (the abstractions that rule interactions); and laws (defining the behaviour of the coordination
media in response to interaction) [10].

According to [26], two kinds of coordination models can be taken into account: control-driven vs. data-driven
models . While the former are focused on the act of communication, the latter are focused on the information
exchanged during communication. In fact, instead of two different, opposing models, these can be considered
as two different forms to observe coordination itself.

Pérez-Sotelo et al., The Role of Agreement Technologies in the Definition of Adaptive…, EJS 10(1) 53-67 (2011) 57

When dealing with a tuple-space meta-model [10] [23], the entities base their interactions (cooperation,
competition, among others) on tuples. The coordination, obviously, takes place in a tuple space, by producing,
consuming tuples, etc. In short, it is created by generative communication. One step forward in the evolution
of coordination allow us to deal with self-organized systems, which have an increasing level of internal
organization between components (agents, in our case) in term of interactions, their structure, etc. [2][10]

Recently, self-organizing coordination [7] is defined as the management of system interactions featuring self-
organising properties, namely, where interactions are local, and global desired effects of coordination appear
by emergence. Constructively, self-organizing coordination is achieved through coordination media spread
over the topological environment, enacting probabilistic and time-dependent coordination rules.

One of the most significant –and increasingly popular– approaches in the context of MAS has been to
consider agents within organizations instead of in isolation [4]. Our own approach, indeed, is an example of
this, as shown in the next section. However, this can ultimately be considered as an approach to coordination:
instead of plain system-wide coordination, organizations allow for scoped coordination. In the same spirit,
there is some kind of intrinsic relationship between self-organized coordination, as mentioned above, and our
intended approach, based on defining an adaptive architecture based in the definition of emergent
organizations – hence, self-organized, scoped coordination.

4 Agreement Technologies: the THOMAS Framework

The central notion in our approach is the agreement between comp utational entities: organizations, at the top
level, but also agents, at the lower levels. The concept is conceived as an architectural construct, and it must
be capable to evolve, to allow the definition of an emergent agreement between these entities.

4.1 Agreement Technologies

In this work we use the set of technologies and approaches globally named as Agreement Technologies [1].
The topics that must be considered to propose an agreement-based coordination can be seen as a “tower”
structure. Each level of the tower provides functionality and inputs to the one above (see Figure 1). Therefore,
the agreement must be seen as a layered structure, by definition. This makes sense with some intuition: when
an agreement is reached, elements located at lower levels must respect it at their own level. The agents
contained in an organization must comply with the terms of the agreement.

The tower structure defines the set of layers which define the conceptual essence of an agreement. These are
the following:

Semantics: the bottom layer, because semantic issues influence all others. The semantic alignment of
ontologies [5] must to be taken into account to avoid mismatches, as well as to have a common
understanding.

Figure 1: Agreement Technologies’ original Tower (layered) Structure [1]

Pérez-Sotelo et al., The Role of Agreement Technologies in the Definition of Adaptive…, EJS 10(1) 53-67 (2011) 58

Norms : this layer is concerned with the definition of rules determining constraints that the agreements, and
the process to reach them, have to satisfy. The norms may imply structural roles affecting (or controlling) the
behaviour of agents, intertwined with the semantic domain.

Organizations: they imply a super-structure that restricts the way agreements are reached by fixing the social
structure of the agents, the capabilities of their roles and relationships [4].

Trust is the highest level in the structure since its mechanisms can be used by agents to summarize the history
of agreements and subsequent agreements executions in order to build long-term relationships between them
[33]. An agreement is built on top of the trust in order to have reliable relationships between organizations.

A wider explanation for these key concepts related to agreements between computational entities can be
found in [24] and [32].

The five layers may benefit from each other; in fact, the agreement is a crosscutting structure, which
maintains a bidirectional relationship to every element it contains [27]. The agreement defines the
architecture: only those elements who agree to be bound are contained in the structure; but at the same time,
the architecture defines the agreement: it channels the forces in the environment and provides a concrete
structure, defining roles which must be filled by specific ele ments. The agreement is shaped by those forces,
but its existence also shapes the reaction to them, and models the future evolution of the system.

In summary, this approach provides the required elements to build an adaptive architecture; to actually define
an emergent agreement would just require identifying the structural patterns, and the set of inter-level
protocols. Further refinements can still be made; though the need for meta-elements has still to be considered,
nothing excludes the definition of specific agents to perform support tasks for the agreement itself (such as
sensors, observers , controllers, planners, etc).

4.2 The THOMAS Framework

This subsection presents the base architecture for the technologies previously discussed which were conceived
to be supported by open MAS.

Current research in the platform is oriented to achieve a greater capacity and functionality by taking
advantage of MAS features, but with a lesser emphasis on efficiency or scalability. Moreover, and from this
point of view, services are used to achieve interoperability, as mentioned earlier. The main idea is to export
the agent system as a system of services. The resulting service ecosystem will be supported, not only
technologically, but also methodologically.

These concepts are built on top of the THOMAS architecture [3]. Its design can be summarized as described
in the following.

Figure 2: THOMAS Technical Architecture (inspired on [3])

Pérez-Sotelo et al., The Role of Agreement Technologies in the Definition of Adaptive…, EJS 10(1) 53-67 (2011) 59

The platform, including its middleware (see Figure 2), is structured in three levels, but they are not strictly
layers. They are orthogonally supported by four specific components, which are included as part of three
different subsystems. The Platform Entities Management subsystem is actually layered in turn. The different
layers of this subsystem are used to provide capabilities for different levels in the platform. The three levels
are:

• Platform Kernel (PK). It is the actual kernel of the middleware; includes both the Network Layer and
the Agent Management System (AMS) component. It provides all the capabilities of FIPA-compliant
architecture [15]. Therefore, at this layer the platform is already an (open) Multi-Agent System.

• Service & Organization Management. This is the conceptual level composed of the Organization
Management System (OMS) and the Service Facilitator (SF) components. Both components provide
all the relevant features and abstractions for the Execution Framework.

• Organization Execution Framework. It is the “space” where all the computational entities “live” and
perform their functions. Agents and their organizations, and the services they offer, are conceptually
located in it. Every specific application would be conceived, designed and executed at this abstraction
level.

The mentioned three main components of the platform are:
• AMS, which provides all the required capabilities and functions for managing an agent;
• OMS, which provides all the required capabilities and functions for managing an organization, and

maintains together the system as a whole; and
• SF, which provides the required capabilities and functions to allow that a certain selection of the

operations in an organization behave as a unified service.
More details can be found in [3].

4.3 The Evolution of the Framework

The framework is under development, currently adapting to OSGi [22] specification. The main idea is to
modularize applications into smaller entities called bundles. These entities can be installed, updated or
removed on the fly and dynamically, providing the ability to change the system behaviour without ever
having to disrupt its operation. The Service Tracker is distinguished among the services provided by this
standard, especially for the proposed approach. This service lets tracking other registered services on the
platform. It is used to ensure that the services to be provided are still available or not. This service is essential
to face the second scenario presented in Section 2.

In a bundle-based system, producers of services, as well as consumers, can appear and disappear at any time.
The standard provides a tool to facilitate the message passing between two entities belonging to different
bundles, the Whiteboard pattern. This tool utilizes the service registry to maintain a list of listeners of the
system, and delegates to the platform the life cycle control of the event producers and consumers. This control
notifies the consumers when a producer disappears, and vice versa.

The current research, which is included as part of the OVAMAH project [25], is extending the objectives of
the platform THOMAS. Besides providing the necessary technology for the development of virtual
organizations in open environments, it will allow to facilitate dynamic answers for changing situations by
means of the adaptation and/or evolution of the organizations. For example, agents forming an organizational
unit could create (or remove) another unit, affecting the groups of the system; decide the moment to add or
delete norms; the social relationship between roles could change at runtime, the conditions to
activate/deactivate, as well as the cardinality of roles; the system topology (given by the relationships) could
be changed also at runtime and then validate the changes with objectives and organizational type; the services
could be matched to new roles; etc.

5 Defining the Emergent Agreement

When a complex problem is tackled by open MAS, the solution often requires certain adaptability. At the
same time, the structure itself needs to be flexible to achieve coordination inside the system. And self-
adaptation is an increasingly more important feature, as already exposed in the introduction.

Pérez-Sotelo et al., The Role of Agreement Technologies in the Definition of Adaptive…, EJS 10(1) 53-67 (2011) 60

The concept of agreement among computational entities seems to be a right approach to tackle the need for an
adaptive structure. The aim of our approach is to discover a suitable structure so that it emerges as a global
agreement. Therefore, in the following we try to define the concepts and elements which, building on the
basic structures described in the previous sections would make possible to define an emergent organization on
top of this agreement.

5.1 Driving Emergence: Controls and Protocols

Depending on concrete goals, any group of individuals can be arranged into certain structures (i.e. a society,
architecture, hierarchy, etc.). The formation of these structures can be triggered by using two different kinds
of elements, which are both based in limiting the range of available actions, namely controls and protocols.

The former, controls, can be seen as mechanisms that either enforce or forbid specific interactions (or
architectural connections). Self-adaptive structures, being typically centralized [2], show many classic
examples of this kind: most of them manifest explicit control loops, inspired in regulators of classic control
theory.

On the other hand, protocols, which either enable or channel behaviour, are based on consensus and
agreements. They can be described generically as the way to control decentralized (even distributed)
structures [16]. Basically, when protocols are present, every agent knows the way to interact with the rest; it is
necessary to comply with them to be able to communicate, but at the same time they are also regulating the
development of the interacting structure itself.

These two mechanisms define a wide spectrum of regulation, in which agent organizations and their
architectures are simultaneously harnessed by atomic, unary controls (such as norms, limits, locks, control
loops or constraints) and multiple, connective protocols (such as hubs, bridges, channels, or spaces).

In software architecture, there are already many patterns and solutions based on implicit controls and
normative constraints. On the other hand, our approach tries to base the solution on consensus: this is also an
architecture-level approach, as the description of interaction is also relevant at this level of description.

It is important to note that the purpose of these mechanisms is to “discover” a suitable structure of controls
and protocols so that a global structure can emerge (i.e. defining different shapes of the architecture). These
elements will make possible to define the main inner structures in order to obtain agreement-based
organizations. Therefore, though not a novelty, it is very relevant, as already noted in section 3, that our
agents are grouped in organizations, unlike the classic plain MAS layout.

Once a primary structure can be defined, an elemental group emerges as a preliminary organization, which we
will refer to as an initiative. This structure is explained in next subsection.

5.2 Defining an Emergent Agreement: the Initiative

As previously noted, a set of controls and protocols can be used to dynamically generate a preliminary
organization inside a group of individuals (agents , in our approach; but also generic components).

Our approach defines and uses such a set of controls and protocols to generate certain structure (therefore
several of them are considered as generative controls and generative protocols). This structure leads to an
organization that grows with the environmental dynamics. The emergent organization is what we call an
initiative: not yet fully established, but still evolving.

Nevertheless, the initiative can continue growing and mutating because of its adaptive nature, but when it has
some stable structure, it can be called organization. This stable structure is achieved when all the participants
can afford the necessary agreement in order to solve the problem or gain the main objective that caused their
union. The resulting organization is then conceptually similar to other organizations in several MAS
approaches, including the original THOMAS [3] itself.

The previous paragraph implies three important concepts in our approach:
• An initiative. It is a preliminary group of individuals (agents) which assemble in a certain structure,

generated by a set of controls and protocols, as well as certain associative patterns;

Pérez-Sotelo et al., The Role of Agreement Technologies in the Definition of Adaptive…, EJS 10(1) 53-67 (2011) 61

• An organization . It is a established group; in our approach, it is dynamically originated from an
initiative (though there are also static organizations; once they are created, both kinds are functionally
equivalent);

• An agreement. It is the act by which an initiative became into a stable organization. In fact, this can be
seen as the consensus which is reached between individuals inside the initial “seed” group.

This process can be seen as the system moving to a new state, in which the structure of the “past” is
supplanted by a “new” emergent structure. Obviously, this novel structure admits new elements because of
the dynamic environment, but now one of its goals is to reinforce its nature, and tends to perpetuate itself.

Therefore, one of the goals of an initiative is to grow; and opposing that, the main goal of an organization is to
maintain itself.

Clearly, the coordination problem is always present in such fields, as presented in section 3. As the structures
become more and more complex, it is clear that for some kind of problems we need that individuals organize
themselves in organizations and after that, as already said, in stable, agreement-based organizations.

Let’s consider our motivating example. In the first moments of the emergency E1 we can think that there are
some police cars arriving to the place, but no one is the leader of the group. They follow a previous internal
protocol to choose a leader (even hierarchy is a protocol), and this agreement generates a preliminary
organization. This is what we call a generative protocol . When the individual follow this kind of protocols,
they define implicit structural patterns.

An initiative can be generated from such patterns, named agreement patterns, where the term is used in an
architectural sense. They are pre-designed from the required services of an initiative and the corresponding
semantic refining. Some of them have been already identified (see forward Table 1), and receive such names
as Façade, Mediator, or Surveyor, among others. (Caveat: though some of these are typical names for
patterns, they are defined in a completely different context; in particular, these are not classic object-oriented
patterns, but architectural patterns).

5.3 Self-Adaptive Organizations as Pure Adaptation

Concepts related to organizations in a growing process were discussed in the previous subsection, and self-
organization is important due to structures construction containing the organizations. In the following,
concepts related to changes suffered by organizations are presented. These organizations have reached a
quiescent or safe state for adaptation, in a certain way. In this case, namely pure adaptation, the importance
lies in the way that an existing organization has to adapt to a new behaviour. First, it has to realize that a
change has occurred, i.e. a change can emerge in an intrinsic way [29], and then it has to adapt itself.

The second scenario in the motivating example presents an organization that is already working in the crisis
area and one essential service is not available. We have identified four alternatives for adaptation:

• Case 1 – with no modification of the organization’s main objective: a search is made inside the
organization, looking for a service similar to that is no longer available. The main idea is the direct
replacement of the service.

• Case 2 – with no modification of main objective: the internal search finds only a service with
minimum similarity to which is no longer available. In this case, the responsible for that service must
learn to answer as the one that is currently unavailable. A learning process is feasible since this is a
MAS-oriented environment. The time spent in this task should be reasonable, according to the
scenario characteristics.

• Case 3 – with no modification of main objective: if the internal search fails, the organization is
allowed to make an external search. This case can be considered as a state change of the organization.
It comes back to the initiative level, which is maintained until reaches a quiescent or safe state, by
agreement.

• Case 4 – with change of the organization’s main objective: in this case, the organization is “forced” to
modify the objective, or divide it in partials goals. It is not possible to offer the original service.

These four cases are the first to be studied for a real adaptation of the organizations, due to they modify not
only the structure but the type of constituent element. More cases like these are expected to develop in the
medium term.

Pérez-Sotelo et al., The Role of Agreement Technologies in the Definition of Adaptive…, EJS 10(1) 53-67 (2011) 62

5.4 Adaptation Patterns

As already noted, the agreement patterns are pre-designed from the required services of an initiative and for
the corresponding semantic refining. Some of them have been identified. According to [30] it is possible to
classify the architectural design patterns as follows: monitoring (M), decision-making (DM), or
reconfiguration (R) based on their objective. M and DM patterns can also be classified as either creational (C)
or structural (S), as defined in [11]. Likewise, R patterns can also be classified as behavioural (B) and
structural (S) since they specify how to physically restructure an architecture once the system has reached a
safe state for adaptation.

Name Category Description

Façade M, S To be able to easily interact with an organization
which still lacks a defined structure, some agent has
to represent the organization itself in terms of
interaction. This agent redirects any incoming
communication; it needs not to be also a supervisor.

Mediator R, B During the emergence process, the organization is
not yet established, and data services are probably
not working. Some agent must act as a mediator,
which makes possible to access to data sources,
although indirectly, and also to perform the
necessary translations – including, in our case,
several kinds of semantic translations.

Surveyor R, S During the emergence process, at least one agent
must monitor the growing of the initiative itself,
both to decide when new elements are inserted, and
also when the initiative stabilizes to form an
organization. The surveyor has access to the pattern
library – it decides when a certain pattern has been
matched and must be triggered.

Table 1: Agreement Patterns: architectural design patterns.

Obviously, there are many more patterns, and not all of them describe roles. For instance, the Surveyor
Election defines the protocol (one among many) to decide the next surveyor; and Surveyor Change describes
a protocol to demote the current surveyor and forward its knowledge to a new one.

The patterns represent a fragment of a structure leading to a dynamic one, the initiative, reaching a stable
form, the organization. As already noted, the system is ultimately conceived as a service-oriented
architecture; so methodologically, our stable organizations must be conceived as the providers for certain
high-level services. Therefore, these services must be proposed as the starting point for the functional
definition of our organizations.

The functional decomposition of these services (or a hierarchical decomposition, from another point of view)
will be also used to design the hierarchical structure of organizations. The concept of service process, in this
context, intends to provide a clear semantic perspective of a service’s functionality, by describing it as a
workflow. Every (high-level) service unfolds into such a (semantic) process, which describes the coordination
between lower level services; every such service is provided by a low-level organization, providing the
structural decomposition from the previous, high-level organization. This process guides the (semantic)
definition of any service-oriented organization, and it is used to define our structures [28].

Moreover, even our dynamic, emergent agreements must be consistent with these semantic definitions; so this
process provides also a method to discover the required patterns for our initiatives. Of course, it has yet to be
refined, and the desired methodology has yet to acquire a definitive form.

Pérez-Sotelo et al., The Role of Agreement Technologies in the Definition of Adaptive…, EJS 10(1) 53-67 (2011) 63

6 Case Study: the Motivating Example in THOMAS

In order to clarify the motivating example and show its usefulness, in this section the first scenario (and some
of the corresponding event sequences) will be described, using concepts built on top of existing work.

These scenario present agents entering the system (i.e. the adaptive architecture), and playing different kind of
roles, interacting within an organizational unit. Apart from providing domain-specific functionality, these
scenarios also show generic system-level behaviour, in our case the foundations for adaptive behaviour.

As explained previously , SUMMA112, the Fire department and the Police send their own agents to attend the
emergency E1. In this section, partial scenarios for these agents are presented, using a several built -in
THOMAS [3] services. The protocol presents them in a basic ordering:

• Unit Registration: used to register a new unit (organizational unit) with a specific structure, goal and
parent unit in the OMS (see subsection 4.2).

RegisterUnit (UnitID, Type, Goal [,ParentUnitID]).

In our example, O1 must be registered as an organization:

RegisterUnit (O1, default, default, default)

• Registration as a Member. Each agent has to register as a member of the system and then join the
corresponding organizational unit (see Figure 3), i.e. the emerging organization, O1. This process has
two steps:
1. The agent must register as a member of the Platform itself:

AcquireRole(Member, Virtual)
2. The agent registers as a domain-specific role in the organization:

AcquireRole(Fireman, O1)

Figure 3: Role Acquisition during Fire Emergency, in THOMAS

In this way, organization O1 can add all the necessary agents to tackle the E1 emergency. O1 starts as an
initiative until all its members have achieved the necessary agreement (i.e. internal consensus) to become a
stable organization and be able to maintain its characteristics. The protocol to decide this is also a pattern:
there may be many agreement establishment patterns, and the current surveyor is responsible to choose or
decide among them – usually from environmental information.

O1 can also loose agents after they have completed their function in E1; these agents can then be added to O2
to face the E2 emergency, as already explained in the example (see section 2).

Pérez-Sotelo et al., The Role of Agreement Technologies in the Definition of Adaptive…, EJS 10(1) 53-67 (2011) 64

• Expulsion: this service is used to force an agent to leave a specific role.
Expel (AgentID, UnitID, RoleID)

Using the all of the above, consider for instance the set of actions carried out by a certain agent (let’s say
Fireman #1) in the E1-E2 example.

AcquireRole (Member, Virtual) -- Activated as Fireman #1

Hello (F#1, O1) -- Reaches O1 and presents itself

AcquireRole (Fireman, O1) -- Joins O1 as a fireman

(…) -- … after some work…

Expel (F#1, O1, Fireman) -- Fireman #1 released from O1

Hello (F#1, O2) -- Reaches O2 and presents itself

AcquireRole (Fireman, O2) -- Joins O2 as a fireman

Consider that the agent does not need to know if O1 is an already established organization (a static
organization) or it is still growing (i.e. it is an initiative). In the first case it is registered as an organization
within the OMS; in the second case, a façade agent gets in charge of capturing these messages. But the
fireman agent, in both cases, uses system services to send the relevant messages.

In summary, the base system (the AT infrastructure implemented by the THOMAS platform) already provides
the required elements to build an adaptive architecture, in terms of internal services able to join/leave an
organization and define the structure according to their internal agreements. Therefore, to actually define an
emergent agreement it is just necessary to provide the substrate to describe an actual working initiative, i.e. a
library of structural agreement patterns, and the set of inter-level protocols that identify them and their roles
(façade, surveyor, etc).

The developments from this scenario constitute work in progress. Using the concepts and patterns presented
in the previous section, a set or structural agreement patterns are currently stored and accessed within the
framework, and are being used for a number of experiments (including this one example). Both these
concepts and the constructs they describe have already shown their relevance – but the current syntax and
protocols cannot be considered as optimal. However, as already noted, performance is not our main concern
now, but the essential dynamism and the adaptive functionality required by our architecture.

The second scenario also constitutes work in progress, and as already said in 5.3, the four cases presented are
the first to be studied for a real adaptation of the organizations. We expect to develop more cases like these
and their implementation in the medium term.

7 Conclusions and Future Work

This paper has explored structural concepts as the basis of an architectural approach to provide self-adaptivity
to software systems. The proposed concept of initiative must be considered as a starting point to provide
mechanisms to change the composition patterns and element types within such systems.

The required dynamism can be supported by an emergent agreement - an evolving architectural structure,
based on combining predefined controls and protocols: these are handled in the context of the service-
oriented, agent-based and organization-centric framework defined in AT, provided by the implementation in
THOMAS platform, the OVAMAH project, and services compatible to OSGi standard.

Pérez-Sotelo et al., The Role of Agreement Technologies in the Definition of Adaptive…, EJS 10(1) 53-67 (2011) 65

The key idea is to create an architectural context, in which agents are coordinated and reorganized by
inclusion in preliminary structures –i.e. agreement patterns– and then in stable organizations.

The platform described in Section 4, including modifications to be made by the OVAMAH project, provides
services and facilities to carry out the system reconfiguration. The proposed concepts it can already be
considered as a starting point to establish the necessary structures to achieve actual self-adaptivity.

Technologically, the existing (and concurrent) work is both FIPA [15] compliant, and also able to interact
with JADE [17] agents. There are further developments in the works, particularly at the service level and at
the agent level – affecting even performance.

Indeed, even when our approach seems promising, in the sense that is possible to achieve self-adaptation,
these are the first steps.

Further work will develop and implement variants of this approach, in order to refine it. The concepts are still
evolving and the process of defining their limits still continues – but even at this initial stage, the existing
fragments of the approach have already proven its utility and expressive power. Current results suggest that
the adaptive architecture is indeed feasible because the infrastructure developed can grow just adding new
adaptive patterns. The results could fulfil the promise of generalizing the usefulness and extension of the
MAS approach, adapting it to new and more agile technologies.

Acknowledgement

This work has been partially funded by the Spanish Ministry of Science and Innovation within Projects
Agreement Technologies AT (CONSOLIDER CSD2007-0022, INGENIO 2010), OVAMAH (TIN2009-
13839 -C03-02) and MULTIPLE (TIN2009-13838); and by the EU RTD Framework Programme, through
Action COST AT (COST Action IC0801).

References

1. Agreement Technologies (AT) Project: http://www.agreement-technologies.org/ (2011)

2. Andersson, J.; de Lemos, R.; Malek, S.; and Weyns, D. Modeling Dimensions of Self-Adaptive Software
Systems . In Software Engineering for Self-Adaptive Systems, vol. 5525 Lecture Notes in Computer
Science, pages 27-47, Springer, 2009.

3. Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., and Rebollo, M.: An Abstract Architecture for
Virtual Organizations: The THOMAS Project. Technical report, DSIC, Universidad Politécnica de
Valencia (2008).

4. Argente, E., Julian, V., and Botti, V.: Multi-Agent System Development based on Organizations.
Electronic Notes in Theoretical Computer Science 150(3):55-71 (2006).

5. Atienza, M., Schorlemmer, M.: I-SSA - Interaction-situated Semantic Alignment. Proc Int. Conf. on
Cooperative Information Systems (CoopIS 2008).

6. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and Orchard, D.: Web
Services Architecture. W3C WSA Working Group, W3 Consortium (2004)

7. Casadei, M., and Viroli, M.: Applying self-organising coordination to the emergent tuple organization in
distributed networks. (Brueckner, S. et. al. editors) 2nd IEEE International Conference on Self-Adaptive
and Self-Organizing Systems (SASO 2008).

8. Centeno, R., Fagundes, M., Billhardt, H., and Ossowski, S.: Supporting Medical Emergencies by SMA.
In Agent and Multi-Agent Systems: Technologies and Applications. LNCS, vol. 5559:823-833. Springer
(2009).

9. Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S.: Web Services Description Language
(WSDL) 1.1. W3C Consortium. W3C Note (2001)

Pérez-Sotelo et al., The Role of Agreement Technologies in the Definition of Adaptive…, EJS 10(1) 53-67 (2011) 66

10. Ciancarini, P.: Coordination models and languages as software integrators. ACM Computing Surveys,
28(2):300-302 (1996)

11. Cuesta, C.E., Fuente, P., Barrio, M., Beato, E. Dynamic Coordination Architecture through the use of
Reflection. Proc. 16th ACM Symposium on Applied Computing (SAC 2001), pages 134-140, ACM Press,
March 2001.

12. DeLoach, S.: Moving multi-agent systems from research to practice. International Journal of Agent-
Oriented Software Engineering - Vol. 3, Nº. 4, pages 378 – 382 (2009)

13. Esteban, J., Laskey, K., McCabe, F., and Thornton, D.: Reference Architecture for Service Oriented
Architecture 1.0. Organization for the Advancement of Structured Information Standards (OASIS)
(2008).

14. Fiadeiro, J. L.: Designing for Software's Social Complexity. In Computer - IEEE Computer Society,
pages 34-39 (2007).

15. FIPA. FIPA Abstract Architecture Specification. Technical Report SC00001L, Foundation for Intelligent
Physical Agents. FIPA TC Architecture (2002).

16. Galloway, A.R. Protocol: How Control Exists after Decentralization. MIT Press, 2004.

17. JADE - Java Agent DEvelopment Framework. http://jade.tilab.com/

18. Kephart, J.O. and Chess, D.M. The Vision of Autonomic Computing. IEEE Computer 36(1):41-50,
January 2003.

19. Kramer, J. and Magee, J. Self-Managed Systems: an Architectural Challenge. In Future of Software
Engineering (FOSE @ ICSE’2007), pages 259-268, IEEE, May 2007.

20. MacKenzie, C., Laskey, K., McCabe, F., Brown, P., and Metz, R.: Reference Model for Service Oriented
Architecture 1.0. Organization for the Advancement of Structured Information Standards (OASIS)
(2006).

21. OMA: The Open Mashup Alliance: http://www.openmashup.org/ (2011)

22. OSGi: formerly known as the Open Services Gateway initiative, now an obsolete name.
http://www.osgi.org/ (2011)

23. Ossowski, S.: Co-ordination in Artificial Agent Societies. LNAI 1535. Springer (1999).

24. Ossowski, S.: Coordination in Multi-Agent Systems: Towards a Technology of Agreement. LNCS 5244.
Springer (2008).

25. OVAMAH - Organizaciones Virtuales Adaptativas: Técnicas y Mecanismos de Descripción y
Adaptación http://www.cetinia.urjc.es/es/node/353 (2011)

26. Papadopoulos, G. A., and Arbab, F.: Coordination models and languages. In Zelkowitz, M. V., editor,
The Engineering of Large Systems, volume 46 of Advances in Computers, pages 329-400. Academic
Press (1998).

27. Pérez, J. S., Cuesta, C., and Ossowski, S.: El Acuerdo como Arquitectura Adaptativa para Sistemas
Multiagente Abiertos. XV Congreso Argentino de Ciencias de la Computación – CACIC (2009).

28. Pérez, J. S., Cuesta, C., and Ossowski, S.: Agreement Technologies for Adaptive, Service-Oriented
Multi-Agent Systems. II Workshop on Agreement Technologies WAT – XIII Conferencia de la
Asociación Española para la Inteligencia Artificial CAEPIA (2009)

29. Prokopenko, M., Boschetti, F., and Ryan, A.J.: An Information-Theoretic Primer on Complexity, Self-
Organization, and Emergence. Complexity, Vol.15-1:11-28. Wiley Periodicals, Inc. (2008).

30. Ramírez, A. J., and Cheng, B. H. C.: Design Patterns for Developing Dynamically Adaptive Systems.
ICSE2010-SEAMS. Pages 49-58 (2010).

31. Rosenschein, J., and Zlotkin, G.: Rules of Encounter – Designing Conventions for Automated
Negotiation among Co mputers. MIT Press (1994).

Pérez-Sotelo et al., The Role of Agreement Technologies in the Definition of Adaptive…, EJS 10(1) 53-67 (2011) 67

32. Sierra, C.; Botti, V.; Ossowski, S. (2010): Agreement Computing. In: KI - Künstliche Intelligenz Vol 24.
ISSN: 0933-1875

33. Sierra, C., Debenham, J.: Information-Based Agency. Proc Intl. Joint Conference on AI (IJCAI-2007).
AAAI Press, pages 1513-1518 (2007).

34. SUMMA112: http://www.madrid.org/cs/Satellite?language=es&pagename=SUMMA112
%2FPage%2FS112_home (2009).

35. Weyns, D., Helleboogh, A., and Holvoet, T.: How to get multi-agent systems accepted in industry?
International Journal of Agent-Oriented Software Engineering - Vol. 3, Nº. 4, pages 383 – 390 (2009).

