
Generic software for benchmarking Formal
Concept Analysis: Orange3 integration

Nicolas Leutwyler1,2,3, Mario Lezoche1,2, Hervé Panetto1,2, and Diego Torres3,4

1 Université de Lorraine, Nancy 54000, France
2 CRAN, Nancy 54000, France

3 LIFIA, CICPBA-Facultad de Informática, UNLP, La Plata 1900, Argentina
4 Dto. CyT, UNQ, Bernal, Argentina

Abstract. Thanks to the internet of things (IoT) and cyber physical
systems (CPS), we face an incremental growth of the available data,
either on the internet or in private databases. This resulted in data min-
ing techniques becoming an essential piece in the information retrieval
process. Moreover, trends like the industry 4.0 encourages its usage to
support data driven decisions, for instance. Formal Concept Analysis
(FCA) is one of the most used techniques in the unsupervised data min-
ing field due to its inherent ability to find patterns between concepts.
As a consequence, many applications need the use of fast algorithms to
perform the calculations to retrieve either the lattice or the association
rules related with the data at their disposal. Due to this, scientists often
rely on manually crafted benchmarks to compare how certain algorithms
perform under different circumstances. In this work, we propose the ar-
chitecture of a software to generalize these benchmarks independently of
the algorithms, to be integrated in the open source data analysis software
Orange3.

Keywords: Formal Concept Analysis · benchmarking · metaprogram-
ming · open source.

1 Introduction

Data mining techniques are widely used to support data driven decisions [19],
to infer knowledge automatically in contexts such as software modelling, or arti-
ficial intelligence [25,24]. Furthermore, the internet of things and cyber physical
systems could use some gains the data mining provide through semantic inter-
operability [3,20]. However, these fields need precise and fast processing of the
information since they usually work in real time [22]. In this context, the effort
towards finding fast data mining algorithms and measuring their performance is
understandable [13,14].

In conventional agriculture, pesticides, antimicrobials and other pest control
products are undesired, thus the need of alternative solutions. The European
Green Deal is one of the most important actions in Europe to overcome the
challenges of climate change and environmental degradation, sometimes caused
by the usage of pesticides. In the state of the art, there are numerous descriptions
of active plant-based products used as bio-pesticides. The Knomana (KNOwl-
edge MANAgement on pesticide plants in Africa) project’s goal is to gather data

Electronic Journal of SADIO EJS Vol.22 N.3 (2023) ISSN 1514-6774 28

Received April 2023 Accepted July 2023; Published August 2023

This paper is partially supported by funding provided by the STIC AmSud program, Project 22STIC-01.

about these bio-pesticides and implement methods to support the exploration of
knowledge by the potential users (farmers, researchers, retailers, etc.). Consid-
ering the needs expressed by the domain experts, information retrieval is needed
to obtain relevant insight on the matter. In addition, data clustering into similar
groups is helpful when it comes to understanding key differences (or similarities)
of objects in general. Formal Concept Analysis (FCA) appears as a suitable ap-
proach, due to its inherent qualities for structuring and classifying data through
conceptual structures that provide a relevant support for data exploration.

Additionally, the trend driven by the Industry 4.0 [4,15] is to increase the
usage of the available data in order to increase the performance and the effi-
ciency of processes. In particular, regarding the Agriculture 4.0, impulsed also
by the Green Deal in the EU, several works have been carried out using the
data mining method called Formal Concept Analysis (FCA) [23,9], and also its
multi-relational data mining [7] extension Relational Concept Analysis (RCA)
[21,11]. There are several good results about the time complexity in the worst
case from the main FCA algorithm, which is the one that calculates the set of
formal concepts (see Section 3). Nevertheless, according to some previous ex-
periments, it is known that some algorithms with worse time complexity than
others perform better under certain circumstances [13,14].

Consequently, while developing new algorithms in this area, it is important to
also perform a good benchmarking suit of tests to understand in which situations
the algorithms strives. This is something that usually takes extra effort since it
is for the most part a manual process. In the current literature, one way to ease
the manual work required to perform these tests is approached by providing
generic testing tools for the particular application [17,26]. Particularly, we could
not find any work in this area applied particularly to the algorithms for FCA
and its extensions.

In this work, we introduce a software tool to benchmark, and another to use
FCA in data pipeline. Both of them are thought to be added to the architecture
of the open access data analysis software Orange3 [18]. It is worth mentioning
that some works have been published in the field of generically benchmarking
algorithms [6,5], and that our goal in this paper is to present a tool that, while
generic, it still provides specific functions for the FCA use case.

The paper is organized as follows: In Section 2, we discuss the state of the art
of generic testing tools for specific applications. Section 3 explains the notation
and concepts we will use throughout the document. Section 4 presents a use case
of the Formal Concept Analysis as a motivation for the creation of the generic
tool. Section 5 presents the software model, the context in which it is integrated,
and the main algorithms. Finally, Section 6 summarizes the contribution and
discusses the possible future work.

2 Related Work

For the purpose of this work, we consider that testing tools are divided in two
categories. The first one, is a one in which the tool must provide a set of options

Electronic Journal of SADIO EJS Vol.22 N.3 (2023) ISSN 1514-6774 29

Received April 2023 Accepted July 2023; Published August 2023

to reliably test a specific process that never changes. For example, a tool to
automatically test REST API’s load. Regardless of the specific endpoints, the
testing part would always follow the pattern of reaching the endpoints, measuring
the time between request and response, and so on and so forth [8,28]. The second
group is the one that involves giving to the user a generic set of functions to test
something that we do not know in advance, e.g., testing algorithms, functions
in general. The challenge of this category is the fact that the process we want
to test is not known beforehand, and thus, the techniques used to solve them
usually involve metaprogramming or reflection [16]. A commonly applied method
to tackle this type of tools, is to develop a domain specific language (DSL) in
order to provide the users a flexible way to define what or how to test their
functions [1,12].

In the case of benchmarking the calculation of formal concepts in FCA, the
problem belongs to both categories. On the one hand, the main process will
include one step that will always be a part of it: calculating derivatives (explained
in Section 3). On the other hand, how or when the algorithm will do it is unknown
and hence it belongs to the second category. Therefore, the solution we propose
includes a part that explodes the common pattern the method will always follow,
and one in which the user is given the possibility to manually choose what and
how to test. The disadvantage of the solution, is that it will not completely
remove the manual effort required, but since the complexity is encapsulated in
the provided functions, it will reduce it.

3 Preliminaries

3.1 Formal Concept Analysis

Formal Concept Analysis (FCA) is a clustering method whose input is a triple
K = (O,A, I), where O is a set of objects, A is a set of attributes, and I is
an incidence matrix, indicating whether each object has an attribute or not

e.g., K = ({o1, o2}, {a1, a2},
[
0 1
1 1

]
) is a formal context in which o1 only has the

attribute a2, and o2 has both. Alternatively we can see it as a bipartite graph i.e.,
O and A are the disjoint sets of nodes, and I is the set of arcs. The derivative
operation ′ on objects in the set X ⊆ O is defined as the intersection of attributes
of each object o ∈ X.

X ′ = {a ∈ A | ∀o ∈ X : Io,a} (1)

Analogously, we can define the derivative of a set of attributes as follows,

Y ′ = {o ∈ O | ∀a ∈ Y : Io,a} (2)

Having this in mind, a formal concept is a pair C = (X,Y) where X ⊆ O, Y ⊆ A
such that X ′ = Y , Y ′ = X. X is called the extent and Y the intent. Put it into
bipartite graph notation, a formal concept is a bi-clique i.e., a complete bipartite
subgraph. For readability purposes, we note C.E to the extent, and C.I to the

Electronic Journal of SADIO EJS Vol.22 N.3 (2023) ISSN 1514-6774 30

Received April 2023 Accepted July 2023; Published August 2023

intent. The set of all the formal concepts and the relation of inclusion of extents
form the so-called concept lattice, which is a partially ordered set, and is often
noted with the letter L.

3.2 Common algorithms and their differences

Many reviews about algorithms for computing formal concepts have been made
in the past [2,14,27]. There are many nuances to how they are implemented and
also to their output. Some of them compute only the formal concepts, whilst
others also calculate their underlying lattice diagram. For the purpose of this
work, we will consider computing all the formal concepts and calculating their
diagram to be separate problems, although they can be solved at the same time.

As we mentioned in Section 1, and as we can see in the mentioned reviews,
there are many approaches on how to deal with the repetition of results in
the calculation of the concepts, which occurs mainly because different subsets
X ⊆ O, might yield the same Y ⊆ A when the derivative operation is applied,
but only the largest of them is present in a concept. Algorithms deal with this
problem in different ways, from which in this work we aim to consider two: having
a clever structure that allows to rapidly finding repeated results (e.g., Linding’s
algorithm, etc), or by traversing the context in a certain order that ensures that
some results will not be repeated (e.g., Andrews’ Inclose algorithm, etc).

3.3 Orange3 software

The Orange3 software [18] is an open source machine learning and data visual-
isation tool whose aim is to make data analysis accessible to the end user in an
intuitive way. To achieve this, it provides a way to pipeline data through “boxes”
with certain input and output each, allowing to reuse them whenever necessary.
This structure also allows simplifying the way to contribute to the project, since
boxes can be thought as independent programs that define how to interact with
their input and how to export the output. Additionally, Orange3 allows the de-
velopment of separate plugins or add-ons, or in other words: external pieces of
software that can be added to the main application. The scope of this paper is
to introduce the architecture of an add-on with its components and interactions,
and explaining how it would help to the analysis and benchmarking of formal
concept analysis algorithms.

4 Motivation

To have a closer idea to what the Knomana dataset contains, an extract can
be found in the Table 1. The formal context’s objects are names of organisms
composed by three parts: species, genus, and family. Even though they could be
considered as different types, i.e., crops, pests, and protection species, in this
example, we put them in the same table because they share the same attributes.

Electronic Journal of SADIO EJS Vol.22 N.3 (2023) ISSN 1514-6774 31

Received April 2023 Accepted July 2023; Published August 2023

Table 1: Plants, crops and bio-aggressors formal context
K Food Medical
Abies sibirica/ Abies/ Pinaceae
Acanthospermum hispidum/ Acanthospermum/ Asteraceae X
Anticarsia gemmatalis/ Anticarsia/ Noctuidae
Allium sativum/ Allium/ Amaryllidaceae X X
Spodoptera frugiperda/ Spodoptera/ Noctuidae
Spodoptera littoralis/ Spodoptera/ Noctuidae
Spodoptera litura/ Spodoptera/ Noctuidae
CropS/ CropG/ CropF X X
CropFabaS/ CropFabaG/ Fabaceae X
Zanthoxylum rhetsa/ Zanthoxylum/ Rutaceae X
Zingiber officinale/ Zingiber/ Zingiberaceae X X

Particularly, in the work [10], the FCA extension RCA is used to extract
patterns in the data related to some plants being natural pesticides to other
ones. Moreover, RCA needs to perform the algorithm to calculate the set of
formal concepts of formal contexts many times in a loop until it converges, as
explained in the Figure 1. Each iteration, using the calculated lattices and the
relations in the input, increases the size of formal contexts in terms of their
attributes, i.e., adds columns. This results on the possibility of the number of
formal concepts increasing greatly, hence the need of fast algorithms to do it. In
addition, available algorithms to calculate formal concepts perform differently
according to the type of data, for instance, some of them perform better when
formal contexts are sparse, and others when they are dense.

FC1

.

.

.

FCn

Formal Contexts

Formal
Concepts1

. . . Formal
Conceptsn

Formal Concepts

Relations

calculate

+

extend

Fig. 1: RCA extension algorithm main loop

Electronic Journal of SADIO EJS Vol.22 N.3 (2023) ISSN 1514-6774 32

Received April 2023 Accepted July 2023; Published August 2023

This leads us to a state in which making all kinds of experiments on these
algorithms is necessary to better understand when which of them are more suit-
able according to the situation. However, it is rather tedious, since algorithms
are typically different between themselves and there is not a common pattern
to test them all the same way. Therefore, this work aims to smoothen the effort
needed to perform benchmarking experiments on particularly formal concepts
calculation algorithms. Additionally, the paper is intended to serve as a first
approach guide on how to tackle generic denotational testing frameworks using
metaprogramming techniques.

5 Software model

As explained in the Section 3.3, the units that users have to deal with in the
platform are represented by boxes that are in fact algorithms with defined inputs
and outputs. In that regard, the first input that concerns us is the name of a file
representing a Formal Context, which, in our particular case, will be a csv. For
the mentioned input, there should be a box called Formal Context that outputs
the parsed formal context K = (O,A, I) so that other algorithms do not have to
deal with the parsing task over and over again. Then, to provide visualization to
what we are parsing, there will be a box whose purpose is to show the bipartite
graph representation of K (see Section 3). Furthermore, and continuing with the
visualization, the add-on will provide a box for visualizing the Hasse diagram
(and leave the door open to implement other visualizations such as the Iceberg
concepts lattice).

Regarding the core and therefore the most important part of the architec-
ture, the plugin will include a box that computes the list (or stream) of formal
concepts, and that will act as the entry point for the generic benchmarking ab-
stract public interface (a.k.a., API). This box (red one in the Fig 2) will allow
executing a default algorithm (Inclose), or to choose a user defined one. There
is where, depending on what are the metrics the user specified to measure, the
box will show them in a table format. The goal is to provide the user a set
of generic decorators that allow to annotate specific functions, or specific parts
of the algorithm to be measured in different ways: how many times a certain
function is executed, how much memory it consumes, how much time in total or
in average it spent during the execution, etc. And some specific ones related to
formal context analysis, such as the times a derivative was calculated repeatedly.

5.1 Benchmarking API

The benchmarking API will heavily rely on introspection and meta-programming
patterns [16]. Particularly, it will use decorators to add meta information to the
algorithm that will later be used for the runner to gather the data and be able
to output it in some fashion. The notation we will use for the decorators is the
same Python uses, and it consists of adding an @ to the beginning of each of
them in order to identify them. Additionally, in the pseudocode, we will use

Electronic Journal of SADIO EJS Vol.22 N.3 (2023) ISSN 1514-6774 33

Received April 2023 Accepted July 2023; Published August 2023

Fig. 2: Architecture diagram representing the expected components and their
interactions

*args as a way to say “any number of parameters”. The generic decorators will
be the following,

1. @measure_time()
2. @measure_times_executed()
3. @measure_memory()

while the FCA specific ones will be,

4. @object_derivative()
5. @attribute_derivative()

Specifically, the decorator 1 is expected to be applied to any function the
user would want to measure the time it takes. In addition, the decorator 2 will
count how many times a function is executed. And finally, the 3rd decorator will
take note of the memory usage during the execution of the function and output
the maximum usage of it. Notice that the runner will measure every decorated
function, even if it is being called recursively, meaning that depending on what
the user wants to do, sometimes it would be better to separate recursive functions
in the first call and then the recursive one. Decorators 4 and 5, both describe a
function that, each time is called, produces an object or an attribute derivative
respectively. This provides essential information to the runner to measure how
many times the overall algorithms repeats calculations.

Electronic Journal of SADIO EJS Vol.22 N.3 (2023) ISSN 1514-6774 34

Received April 2023 Accepted July 2023; Published August 2023

Implementation Firstly, we will use the words decorator and wrapper inter-
changeably. On the one hand, the three first decorators are very similar in struc-
ture: they will wrap the function with a specific type of function or class that
hints the runner to call it in a particular way and also output their specific type
of information, e.g., a float representing time, an integer representing the amount
of times the function has been executed, etc. When the wrapper is called, it ini-
tializes the necessary objects to gather the information, then it calls and returns
the same as the function it wraps. As the execution ends, the wrapper will have
the information saved in a dictionary as an instance variable to be collected by
the runner.

On the other hand, the fourth and fifth decorators are different in the sense
that they have to also keep track of what are the structures already generated.
To do that, it is necessary to implement a way to tell whether two structures
are the same or not.

Algorithm 1: measure_time decorator
Input: f , a function or a callable class
Output: A callable class responsible for measuring the execution time of f

1 Def wrapper(*args, collector):
2 start_timer()
3 res ← f(*args)
4 time_passed ← stop_timer()
5 collector.add_measure_time(f , time_passed)
6 return res
7 end
8 return wrapper

Algorithm 2: measure_times_executed decorator
Input: f , a function or a callable class
Output: A callable class responsible for measuring how many times f is called

1 Def wrapper(*args, collector):
2 res ← f(*args)
3 collector.add_times_executed(f)
4 return res
5 end
6 return wrapper

Electronic Journal of SADIO EJS Vol.22 N.3 (2023) ISSN 1514-6774 35

Received April 2023 Accepted July 2023; Published August 2023

Algorithm 3: measure_memory decorator
Input: f , a function or a callable class
Output: A callable class responsible for measuring the maximum memory f

consumes during its executions
1 Def wrapper(*args, collector):
2 profiled_function ← profile(f)
3 res, profiling_data ← profiled_function(*args)
4 collector.function_executed_with_memory(f , profiling_data.memory)
5 return res
6 end
7 return wrapper

Algorithm 4: object_derivative decorator
Input: f , a function or a callable class
Output: A callable class responsible for measuring the amount of times a set

has been calculated
1 Def wrapper(*args, collector):
2 res ← f(*args)
3 collector.object_derivative_calculated(res)
4 return res
5 end
6 return wrapper

5.2 Runner

This component is the responsible for running the user provided code as its name
suggests, but also for reporting the information at the end of the run. Thanks to
the fact that decorators handle the complexity of knowing when the functions
are executed, and also what to do in each case, for the running part, the runner
should only execute the algorithm as it is. The challenge comes in the collecting
part because the runner does not have control over when some of the functions
are called, in fact, most of them will be instantiated to be executed and then
discarded and the runner would not even notice it. To solve this problem, all
decorators will expect one more parameter besides the function to wrap, being an
object whose purpose is to save each measurable function call. Then, our runner
will run a modified version of the abstract syntax tree (AST) that provides
this parameter, having access to this new object, and thus having access to the
information after its execution.

Particularly, the Algorithm 1 starts a timer, runs the original function with
its parameters, after, it measures the time that passed between the call and the
end of the function, and finally, it tells the collector to add it to the total time
spent for that specific function. Following the same pattern, the Algorithm 2,
simply executes the function with its parameters, and afterwards it adds one
to the total times executed for the specific function. And somehow more com-
plex, the Algorithm 3 wraps the function to be executed to a profiling wrapper,

Electronic Journal of SADIO EJS Vol.22 N.3 (2023) ISSN 1514-6774 36

Received April 2023 Accepted July 2023; Published August 2023

and after executing it, sends the memory statistic to the collector. Lastly, the
Algorithm 4 calls the collector’s object_derivative_calculated function, to add
1 to the amount of times that particular derivative has been calculated. The
algorithm for attribute_derivative would be exactly the same as 4 but calling
the function that adds to the attribute derivatives instead. It is important to
notice that all these algorithms return a function defined inside it, meaning it is
considering high order functions, i.e., functions as first class citizen values.

On top of each wrapper, the collector is expected to be an object with the
following methods

Algorithm 5: add_measure_time collector ’s method
Input: f , a function or a callable class, and t, an integer representing the time

spent by f
Output: A mehod responsible for adding the time spent by f

1 times_table[f] += t

Algorithm 6: add_times_executed collector ’s method
Input: f , a function or a callable class
Output: A mehod responsible for adding 1 to f times executes

1 times_executed_table[f] += 1

Algorithm 7: function_executed_with_memory collector ’s method
Input: f , a function or a callable class, and m an integer representing the

memory spent by f
Output: A mehod responsible for recording the most memory spent by the

executions of f
1 memory_spent_table[f] ← max (memory_spent_table[f], m)

All three algorithms assume the existence of a mapping between functions and
their specific value. In particular, the Algorithm 5 adds t to the mapping, here the
algorithm assumes that the table has been previously initialized with 0, resulting
in a semantic that will maintain the total amount of time spent by a function.
In the same line, the Algorithm 6 adds 1 to the current value, meaning that
it correctly counts how many times a function has been executed. Finally, the
Algorithm 7 always remembers the maximum between what it had previously
and the new m.

Electronic Journal of SADIO EJS Vol.22 N.3 (2023) ISSN 1514-6774 37

Received April 2023 Accepted July 2023; Published August 2023

6 Conclusion and future work

In this work, we presented a generic tool to allow benchmarking certain aspects
of FCA formal concepts generation algorithms instead of handcrafting them each
time. The tool is currently being developed on their PIDIR, by Soukayna Ouabi
and Loïc Chaillot, two students at TELECOM Nancy Engineering School. The
advantages of the tool are not only the encapsulation and the centralization of the
benchmarking complexities, but also the fact that it provides the programmers
a denotational way to mark the parts of the code they want to benchmark, i.e.,
they write what instead of how.

Furthermore, the PIDIR project is expected to be extended in the coming
months, so the tool can be upgraded to also include FCA extensions such as
the widely used Relational Concepts Analysis (RCA). This will come with its
own challenges, mainly in the area of software modelling. On top of that, many
challenges are still open in the development of a tool whose main goal is to be
versatile and to provide an easy data visualization to the user. Combining that,
plus the fact that both FCA and RCA produce an output with an exponential
size in terms of their input, we realize that much work could be done in order to
guarantee that all data can be explored, without the need of having everything
loaded in memory.

Finally, the work as a whole could be considered as an approach to tackle
problems involving the generation of tools for programmers and scientists work-
ing on algorithms creation and benchmarking in general, since the form to pro-
ceed should be in the lines of: understanding what needs to be tested, generating
the denotational API, adding the collector, and when the time to benchmark is
needed, the runner should always run a modified version of the AST adding the
extra parameter to all the places needed, e.g., all functions decorated with the
API decorators.

References

1. Albonico, M., Benelallam, A., Mottu, J.M., Sunyé, G.: A DSL-based approach for
elasticity testing of cloud systems. In: Proceedings of the International Workshop
on Domain-Specific Modeling. pp. 8–14. DSM 2016, Association for Computing
Machinery, New York, NY, USA (Oct 2016). https://doi.org/10.1145/3023147.
3023149, https://doi.org/10.1145/3023147.3023149

2. Arévalo, G., Berry, A., Huchard, M., Perrot, G., Sigayret, A.: Performances of Ga-
lois Sub-hierarchy-building Algorithms. In: Kuznetsov, S.O., Schmidt, S. (eds.) For-
mal Concept Analysis. pp. 166–180. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70901-5_11

3. Camarinha-Matos, L.M.: Challenges in IoT Applications and Research. Internet
of Things. Technology and Applications. IFIPIoT 2021 (Jan 2022), https://www.
academia.edu/73315599/Challenges_in_IoT_Applications_and_Research

4. Cardin, O.: Contribution à la conception, l’évaluation et l’implémentation de sys-
tèmes de production cyber-physiques. Habilitation à diriger des recherches, Univer-
sité de nantes (Dec 2016), https://tel.archives-ouvertes.fr/tel-01443318

Electronic Journal of SADIO EJS Vol.22 N.3 (2023) ISSN 1514-6774 38

Received April 2023 Accepted July 2023; Published August 2023

https://doi.org/10.1145/3023147.3023149
https://doi.org/10.1145/3023147.3023149
https://doi.org/10.1145/3023147.3023149
https://doi.org/10.1007/978-3-540-70901-5_11
https://www.academia.edu/73315599/Challenges_in_IoT_Applications_and_Research
https://www.academia.edu/73315599/Challenges_in_IoT_Applications_and_Research
https://tel.archives-ouvertes.fr/tel-01443318

5. Darmont, J., Schneider, M.: Benchmarking OODBs with a Generic Tool.
J. Database Manag. 11, 16–27 (Jul 2000). https://doi.org/10.4018/jdm.
2000070102

6. Digalakis, J., Margaritis, K.G.: On benchmarking functions for genetic algorithm.
International Journal of Computer Mathematics 77 (Jan 2001). https://doi.org/
10.1080/00207160108805080

7. Džeroski, S.: Multi-relational data mining: an introduction. ACM SIGKDD Ex-
plorations Newsletter 5(1), 1–16 (Jul 2003). https://doi.org/10.1145/959242.
959245, https://doi.org/10.1145/959242.959245

8. Fertig, T., Braun, P.: Model-driven Testing of RESTful APIs. In: Proceedings of
the 24th International Conference on World Wide Web. pp. 1497–1502. WWW
’15 Companion, Association for Computing Machinery, New York, NY, USA (May
2015). https://doi.org/10.1145/2740908.2743045, https://doi.org/10.1145/
2740908.2743045

9. Ganter, B., Stumme, G., Wille, R.: Formal Concept Analysis: Foundations and Ap-
plications. Lecture Notes in Computer Science, Springer Berlin Heidelberg (2005),
https://books.google.fr/books?id=oyb6BwAAQBAJ

10. Keip, P., Gutierrez, A., Huchard, M., Le Ber, F., Sarter, S., Silvie, P., Mar-
tin, P.: Effects of Input Data Formalisation in Relational Concept Analysis for
a Data Model with a Ternary Relation. In: Cristea, D., Ber, F.L., Sertkaya, B.
(eds.) ICFCA 2019 - 15th International Conference on Formal Concept Analysis.
Lecture Notes in Computer Science, vol. 11511, pp. 191–207. Springer Interna-
tional Publishing, Frankfurt, Germany (Jun 2019). https://doi.org/10.1007/
978-3-030-21462-3_13, https://hal-lirmm.ccsd.cnrs.fr/lirmm-02092148

11. Keip, P., Gutierrez, A., Huchard, M., Le Ber, F., Sarter, S., Silvie, P., Mar-
tin, P.: Effects of Input Data Formalisation in Relational Concept Analysis for
a Data Model with a Ternary Relation. In: Cristea, D., Le Ber, F., Sertkaya,
B. (eds.) Formal Concept Analysis. pp. 191–207. Lecture Notes in Computer Sci-
ence, Springer International Publishing, Cham (2019). https://doi.org/10.1007/
978-3-030-21462-3_13

12. King, T.M., Nunez, G., Santiago, D., Cando, A., Mack, C.: Legend: an agile DSL
toolset for web acceptance testing. In: Proceedings of the 2014 International Sym-
posium on Software Testing and Analysis. pp. 409–412. ISSTA 2014, Association
for Computing Machinery, New York, NY, USA (Jul 2014). https://doi.org/10.
1145/2610384.2628048, https://doi.org/10.1145/2610384.2628048

13. Kuznetsov, S., Obiedkov, S.: Algorithms for the Construction of Concept Lat-
tices and Their Diagram Graphs, vol. 2168 (Sep 2001). https://doi.org/10.1007/
3-540-44794-6_24, journal Abbreviation: Principles of Data Mining and Knowl-
edge Discovery - Lecture Notes in Computer Science Pages: 300 Publication Title:
Principles of Data Mining and Knowledge Discovery - Lecture Notes in Computer
Science

14. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for gener-
ating concept lattices. Journal of Experimental & Theoretical Artificial Intelligence
14(2-3), 189–216 (Apr 2002). https://doi.org/10.1080/09528130210164170,
http://www.tandfonline.com/doi/abs/10.1080/09528130210164170

15. Lezoche, M., Hernandez, J.E., Alemany Díaz, M.d.M.E., Panetto, H.,
Kacprzyk, J.: Agri-food 4.0: A survey of the supply chains and tech-
nologies for the future agriculture. Computers in Industry 117, 103187
(May 2020). https://doi.org/10.1016/j.compind.2020.103187, https:
//linkinghub.elsevier.com/retrieve/pii/S0166361519307584

Electronic Journal of SADIO EJS Vol.22 N.3 (2023) ISSN 1514-6774 39

Received April 2023 Accepted July 2023; Published August 2023

https://doi.org/10.4018/jdm.2000070102
https://doi.org/10.4018/jdm.2000070102
https://doi.org/10.1080/00207160108805080
https://doi.org/10.1080/00207160108805080
https://doi.org/10.1145/959242.959245
https://doi.org/10.1145/959242.959245
https://doi.org/10.1145/959242.959245
https://doi.org/10.1145/2740908.2743045
https://doi.org/10.1145/2740908.2743045
https://doi.org/10.1145/2740908.2743045
https://books.google.fr/books?id=oyb6BwAAQBAJ
https://doi.org/10.1007/978-3-030-21462-3_13
https://doi.org/10.1007/978-3-030-21462-3_13
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02092148
https://doi.org/10.1007/978-3-030-21462-3_13
https://doi.org/10.1007/978-3-030-21462-3_13
https://doi.org/10.1145/2610384.2628048
https://doi.org/10.1145/2610384.2628048
https://doi.org/10.1145/2610384.2628048
https://doi.org/10.1007/3-540-44794-6_24
https://doi.org/10.1007/3-540-44794-6_24
https://doi.org/10.1080/09528130210164170
http://www.tandfonline.com/doi/abs/10.1080/09528130210164170
https://doi.org/10.1016/j.compind.2020.103187
https://linkinghub.elsevier.com/retrieve/pii/S0166361519307584
https://linkinghub.elsevier.com/retrieve/pii/S0166361519307584

16. Lilis, Y., Savidis, A.: A Survey of Metaprogramming Languages. ACM Comput.
Surv. (2020). https://doi.org/10.1145/3354584

17. Liu, Y., Liu, Y., Chen, T.Y., Zhou, Z.Q.: A Testing Tool for Machine Learning
Applications. In: Proceedings of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops, pp. 386–387. Association for Computing Ma-
chinery, New York, NY, USA (Jun 2020), https://doi.org/10.1145/3387940.
3392694

18. Ljubljana, University of, B.L.: Orange3, https://orangedatamining.com/
19. Manning, C.D., Raghavan, P., Schütze, H.: Introduc-

tion to Information Retrieval (Jul 2008). https://doi.
org/10.1017/CBO9780511809071, https://www.cambridge.org/
highereducation/books/introduction-to-information-retrieval/
669D108D20F556C5C30957D63B5AB65C, iSBN: 9780511809071 Publisher: Cam-
bridge University Press

20. Panetto, H., Lezoche, M., Hernandez Hormazabal, J.E., del Mar Eva Ale-
many Diaz, M., Kacprzyk, J.: Special issue on Agri-Food 4.0 and digitalization in
agriculture supply chains - New directions, challenges and applications. Computers
in Industry 116, 103188 (Apr 2020). https://doi.org/10.1016/j.compind.2020.
103188, https://linkinghub.elsevier.com/retrieve/pii/S0166361519311145

21. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational Concept
Analysis: Mining Concept Lattices From Multi-Relational Data. Annals of Math-
ematics and Artificial Intelligence 67 (Jan 2013). https://doi.org/10.1007/
s10472-012-9329-3

22. Sayad, S.: Real Time Data Mining (Jan 2017)
23. Tamrakar, E.S.: Formal concept analysis: mathematical foundations (Jan

1997), https://www.academia.edu/3362029/Formal_concept_analysis_
mathematical_foundations

24. Wajnberg, M.: Analyse relationnelle de concepts : une méthode polyvalente pour
l’extraction de connaissance. Theses, Université du Québec à Montréal ; Univer-
sité de Lorraine (Nov 2020), https://hal.archives-ouvertes.fr/tel-03042085,
issue: 2020LORR0136

25. Wajnberg, M., Valtchev, P., Lezoche, M., Panetto, H., Massé, A.: Mining Process
Factor Causality Links with Multi-relational Associations. p. 266. Marina Del Rey,
CA, United States (Sep 2019). https://doi.org/10.1145/3360901.3364446

26. Yang, C.S.D., Pollock, L.L.: Towards a structural load testing tool. In: Proceedings
of the 1996 ACM SIGSOFT international symposium on Software testing and
analysis. pp. 201–208. ISSTA ’96, Association for Computing Machinery, New York,
NY, USA (May 1996). https://doi.org/10.1145/229000.226318, https://doi.
org/10.1145/229000.226318

27. Zaki, M., Hsiao, C.J.: Efficient algorithms for mining closed itemsets and their
lattice structure. Knowledge and Data Engineering, IEEE Transactions on 17,
462–478 (May 2005). https://doi.org/10.1109/TKDE.2005.60

28. Zhang, Y., Fu, W., Nie, C.: monadWS: a monad-based testing tool for web services.
In: Proceedings of the 6th International Workshop on Automation of Software Test.
pp. 111–112. AST ’11, Association for Computing Machinery, New York, NY, USA
(May 2011). https://doi.org/10.1145/1982595.1982622, https://doi.org/10.
1145/1982595.1982622

Electronic Journal of SADIO EJS Vol.22 N.3 (2023) ISSN 1514-6774 40

Received April 2023 Accepted July 2023; Published August 2023

https://doi.org/10.1145/3354584
https://doi.org/10.1145/3387940.3392694
https://doi.org/10.1145/3387940.3392694
https://orangedatamining.com/
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1017/CBO9780511809071
https://www.cambridge.org/highereducation/books/introduction-to-information-retrieval/669D108D20F556C5C30957D63B5AB65C
https://www.cambridge.org/highereducation/books/introduction-to-information-retrieval/669D108D20F556C5C30957D63B5AB65C
https://www.cambridge.org/highereducation/books/introduction-to-information-retrieval/669D108D20F556C5C30957D63B5AB65C
https://doi.org/10.1016/j.compind.2020.103188
https://doi.org/10.1016/j.compind.2020.103188
https://linkinghub.elsevier.com/retrieve/pii/S0166361519311145
https://doi.org/10.1007/s10472-012-9329-3
https://doi.org/10.1007/s10472-012-9329-3
https://www.academia.edu/3362029/Formal_concept_analysis_mathematical_foundations
https://www.academia.edu/3362029/Formal_concept_analysis_mathematical_foundations
https://hal.archives-ouvertes.fr/tel-03042085
https://doi.org/10.1145/3360901.3364446
https://doi.org/10.1145/229000.226318
https://doi.org/10.1145/229000.226318
https://doi.org/10.1145/229000.226318
https://doi.org/10.1109/TKDE.2005.60
https://doi.org/10.1145/1982595.1982622
https://doi.org/10.1145/1982595.1982622
https://doi.org/10.1145/1982595.1982622

	Generic software for benchmarking Formal Concept Analysis: Orange3 integration

