
A UML Reuse Framework and Tool for Requirements

Engineering

Vitor A. Batista, Daniela C. C. Peixoto, Thiago R. V. Anjos, Wilson Pádua

Synergia – Computer Science Department

UFMG – Federal University of Minas Gerais

Belo Horizonte, Brazil

{vitor, cascini, trva, wilson}@dcc.ufmg.br

Abstract. Requirement Engineering (RE) activities are critical by nature and

mostly manual. Some automated support for tasks helps requirements engineers

to reduce manual labor and, consequently, reduce defects rates and increase

reuse and motivation. In this paper, we introduce a UML framework and tool

support which automates part of the RE process. Using UML stereotypes as the

core of this solution, we created a set of integrated tools composed by: (1) a

reusable framework that models RE behavior patterns that are typically present

in information system projects; (2) a function that allows the reuse of informa-

tion provided by entity modeling; (3) a tool that automates the generation of ap-

plication prototypes; (4) a tool for counting IFPUG Function Points; and (5)a

tool that analyzes specific types of defects. Our findings indicate that the

framework and the automated support are effective at RE modeling and review.

In addition, they increase motivation and promote team engagement, through

elimination of repetitive activities.

Keywords: Requirements Engineering, UML framework

1 Introduction

Requirement Engineering (RE) is a very labor-intensive and critical activity. It is

manual by nature, since requirements are elicited by analysts from users through

workshops and interviews, and recorded in informal or semi-formal specifications[1].

It is critical because its defects inevitably lead to later problems in design and imple-

mentation, whose repair is, usually, expensive and difficult. Many studies have shown

that requirements with poor quality are a major cause of project failures [2],[3],[4].

One way to help analysts is to provide some integrated and automated support for

the RE tasks, in order to reduce manual labor and ease early detection of errors. Since

RE is as a naturally labor-intensive process, only a few tasks may be significantly

automated. However, their contribution to decrease rework and increase productivity

can be substantial. Another way to improve RE support is to provide reusable model

elements, with appropriate guidance.

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 3

In this work, we present the adoption and improvement of an RE sub-process in a

software development organization, Synergia [5]. The RE sub-process is embedded in

a software development process called Praxis-Synergia, one of the processes used at

Synergia. This is a professional version of Praxis, an educational software develop-

ment process [6]. A detailed description of Praxis-Synergia requirements modeling

can be found in Batista et al. [7].

Synergia[5] is a laboratory for software and system engineering, housed in the

Computer Science Department, at Federal University of Minas Gerais, Brazil. It pro-

vides software, systems, training and consulting solutions for Brazilian public agen-

cies and private companies. Though internally organized as a traditional software

development company, it retains academic characteristics, such as the participation of

university students and faculty. Its goal is to provide high-quality IT services, while

imparting professional experience and financial resources to its academic.

Here, we discuss some challenges faced and solutions proposed during this im-

provement effort towards an automated and integrated approach to RE. Our main

contribution lies in providing a UML reuse framework and a set of automated tools to

support RE activities. This reuse framework is intended to standardize modeling of

the most common software transactions in information systems, while remaining flex-

ible enough to let analysts to extend it when needed. It is expected that this approach

should improve model comprehension and reuse, reduce errors and increase produc-

tivity throughout the software development cycle.

The article is structured as follows. Section 2 introduces basic concepts of Praxis

and the problems faced by requirement analysts. Section 3 presents our UML frame-

work and the proposed tools. Section 4 provides a discussion of the results and open

issues. Section 5 presents the related work. Section 6 concludes and presents future

work.

2 Background

Praxis [6] is a model-based, use-case-driven process. In its prescribed development

sequence, a project is divided in iterations, where each iteration implements one or

more functional requirements, modeled as use cases and use case scenarios.

In Praxis, the user requirements are represented in a UML model, called Problem

model. Despite some similarity with RUP’s Analysis Model [8], its structure closely

follows the IEEE-830 standard for Requirements Specification [9].The Problem mod-

el is divided into two main views: Requirement view and Analysis view.

The Requirement view describes the desired product from the user viewpoint,

representing desired functions as UML use cases. Each use case behavior is described

by one or more scenarios. Scenarios may be modeled as UML activities, or described

by text. The former is more adequate for complex interactions; the latter may be con-

venient for simpler ones.

The Analysis view describes the desired product from the developer viewpoint, but

still in the problem-domain. This view models concepts, data, procedures and applica-

tion external interfaces as classes, and their interactions by UML collaborations.

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 4

The adoption of Praxis at Synergia faced some problems during projects execution:

• User interfaces are prototyped in the Requirements view and also modeled as UML

Classes in the Analysis view. Keeping both artifacts consistent during project is

hard and error prone (25% of the defects were found in our requirements reviews).

• Since Praxis does not offer guidelines to model requirements, each use case is

modeled from scratch, according to the experience of each analyst. Common trans-

actions, such as CRUDs (Create-Retrieve-Update-Delete), are often modeled quite

differently by different analysts, and this is a serious impediment to reuse.

• Praxis uses a large subset of UML elements, and much information needs to be

recorded in stereotype properties (tagged values). This results in large checklists,

reviews effort and subsequent rework.

• Standard Praxis records IFPUG Function Points (FP)1 counting in spreadsheets of

the MS Excel. The Synergia developers found somewhat difficult to use those.

Monitoring size evolution, by recording continuously updated FP counts, was an

error-prone manual procedure.

Given such problems faced at Synergia, we proposed a set of improvements in

Praxis-Synergia, in order to overcome them. In next section we present our proposals.

3 The UML Framework and Automated Tools

The solution we proposed includes a set of UML tools which automate common RE

activities, and ease the specification of common user interactions in a typical informa-

tion system.

3.1 The UML Profile

The core of our automated solution is a set of stereotypes which, together with tagged

values and constraints, are used to ease and enhance formal requirements modeling.

In order to model user interfaces (UI), a hierarchy of stereotypes for UI widgets,

fields, commands, navigation was created. A partial view of these stereotypes is

shown in Fig. 1. UIs are modeled as a set of stereotyped classes; composition associa-

tions represent how a widget is graphically embedded inside another. The main

classes of these composition trees are represented with «screen», «modalScreen» or

«report» stereotypes. They have state machines that model their behavior.

UI fields are represented by class attributes with a concrete stereotype of «ba-

seUIAttribute». Commands are modeled as class operations with «command». Navi-

gation between screens is a directed association with «navigate» stereotype, which

holds the operation or operations that trigger that navigation. This association also

holds the target state in the target state machine.

1http://www.ifpug.org/

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 5

Appearance changes, such as visibility and enablement, are modeled for each of

the UI widgets, fields or commands, by tagged values which may hold “Yes”, “No”

and “Depends on State”. In case of depends, the engineer models in which States of

the user interface the values Yes/No applies. Application menus are also modeled as

stereotyped classes («menu», «subMenu») and their «menuItem» operations.

All stereotypes are encapsulated in a UML profile, deployed as a plug-in in our

UML modeling tool, IBM Rational Software Architect (RSA)2. This plug-in also

provides task automation resources, as discussed next.

Fig. 1 - Stereotypes to model user interface elements.

3.2 UML Framework and Interaction Copy Wizard

Different information system projects usually have common behavior patterns, such

as CRUD transactions. Instead of developing them from scratch every time, a reusa-

2 http://www.ibm.com/developerworks/rational/products/rsa/

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 6

ble UML framework should provide enough reuse to make the engineer’s task more

productive and less error prone.

We gathered information from past projects and modeled usual patterns of interac-

tion between the human users and the application user interfaces, as a set of abstract

UML collaborations. The collaboration participants are abstract UI classes that

represent user interfaces, and their widgets and commands. Navigation between par-

ticipant user interfaces and their behavior are modeled in such abstract interactions.

When modeling a concrete, application-specific user interaction, the requirements

engineer represents it by his own concrete collaboration, related by an aggregation

association to the framework collaborations. A wizard in the RSA plug-in helps to

replace participating classes by their concrete counterparts, while preserving useful

base structures and behavior. Fig. 2 shows the result of a wizard execution to copy a

CRUD interaction from the framework. To create the concrete collaboration, the en-

gineer just has to inform names for the concrete user interface class instances.

Fig. 2 – Generation of concrete participants.

During the course of a project, the framework allows engineers to create other ab-

stract interactions, thus extending its capabilities. The interaction copy wizard will be

able to work on the newly created interactions.

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 7

3.3 Referring to Persistent Entities Attributes

Fields in UIs usually correspond to entity class attributes. With this in mind, our ste-

reotype for UI fields holds an association to the persistent entity attribute (usually, a

database field) from which the data come from, or where they are stored. This way,

after the engineer generates his concrete instance of the framework collaboration, he

creates attributes in the user interface widgets, applying on them a stereotype whose

properties refer to an entity attribute. In Praxis-Synergia, this means that entity

attribute documentation is “inherited” by the corresponding user interface field. Fig. 1

shows a group of stereotypes and their tagged values for attributes.

The RSA plug-in helps to create user interface fields from entity attributes. The

engineer just select attributes from entities, and new attributes are created in user

interface widgets referring to the selected entity attributes.

3.4 Prototype Generation

After all application user interfaces, and their attributes, commands and associated

behavior are modeled, the RSA plug-in can generate the application prototypes. This

is made possible by the level of formality imposed by Praxis-Synergia. The RSA

plug-in converts each class, attribute, operation and stereotype’s tagged values into

navigable HTML.

The generated prototype also provides specification pop-ups for each element,

making easier to validate requirements with the users, and to have them understood

by the developers that will provide the real code for application.

Fig. 3 shows an example of the generated prototype for the interaction presented in

Fig. 2. The automated prototype generation helps to maintain consistence between

UML representation and visual prototype.

3.5 Counting Function Points

Function Point (FP) counting is a major Synergia concern, since most of its contracts

are based on FP counts, and this information is crucial to measure true productivity

and to be used in the estimation of future projects [10]. We use Unadjusted Function

Points (UFP), since Adjusted Function Points are not standardized by ISO, and the

Praxis process has other means to compute the cost of non-functional requirements

and complex business rules. Furthermore, correct measurements are crucial to moni-

tor size evolution.

Our experience has shown that most of our customers require significant require-

ments changes during the lifetime of a software development project. It is important

to track continuously both the size of the requested changes and the functional size of

the product. This helps both to accept requirement changes while charging a fair price

for them and to measure productivity in a realistic way, in order to identify produc-

tivity bottlenecks and adopt appropriate actions.

The solution adopted by Synergia to solve the problems mentioned in Section 2

was to count the functions points directly from the UML model, storing the informa-

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 8

tion in the stereotypes attributes. This minimizes inconsistencies caused by such un-

avoidable requirements changes, and allows monitoring project size evolution while

its requirements are still being elicited. The following sections describe the procedure

used to counting the data and transactional functions points.

Fig. 3 - Generated prototype of a CRUD interaction.

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 9

3.5.1 Counting Data Functions3

The Problem model uses UML classes stereotyped with «persistentEntity» to

represent persistent data that the desired application should query or maintain. To

keep the FP count information in the model, attributes were added to this stereotype.

Since the FP counting procedures distinguish two types of Data Functions, we also

created two new stereotypes to differentiate between them:

1. ILF (Internal Logical Files) correspond to data that are maintained by the

application. They are represented by classes with stereotype «internalPersis-

tentEntity».

2. EIF (External Interface Files) correspond to data that are maintained by oth-

er applications, but are queried by the application under FP counting. They

are represented by classes with stereotype «externalPersistentEntity».

Fig. 4 shows the metamodel for those stereotypes. «persistentEntity» becomes an

abstract stereotype, holding common properties that represent data used by the FP

counting methods.

Fig. 4 - Stereotypes for counting Data Functions.

The mapping between the persistent entities from the Problem model and the Data

Functions is neither direct nor one-to-one. Automating this mapping is not simple;

probably, it would require more complex modeling of persistent data. In our method,

a specialist must do such mapping manually.

Based on the Problem model, the FP counting specialist must decide how persis-

tent classes should be grouped, in order to be mapped onto Data Functions (for those

not familiar with FP, this is also a required procedure in manual counting). Fig.5

illustrates a model with four classes and their proposed grouping (the specialist sug-

gested two ILFs, based on this diagram). When Data Functions group more than one

class, the specialist should choose one of them to stand for the group, which usually

requires considering their business significance. In our example, Purchase Order was

chosen as the main class of its group. After grouping all persistent classes, and map-

3 A description of the FP counting procedure can be found at: http://www.ifpug.org/

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 10

ping the groups onto Data Functions, the attributes of the «persistentEntity» stereo-

type should be filled in each main class.

In order to support this procedure, the RSA plug-in eases the filling of the stereo-

type properties and automatically calculates the complexity and total FPs for each

Data Function. Fig.6 shows an example of RSA plug-in usage with the aim of count-

ing the ILF Purchase Order, mapped to classes Purchase Order and Purchase Order

Item.

Fig.5 - Mapping between Classes and Data Functions.

Fig.6 - RSA plug-in View to support the FP counting procedure.

In the example shown in Fig.5, the list of grouped classes, formed by the specialist,

is selected from the model classes which are not yet assigned to Data Functions.

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 11

Based on this list, the number of RETs (Record Element Types) is manually in-

formed. After that, the user could select any attribute of the selected classes (including

association attributes), to count them as DETs (Data Element Types).

Finally, the specialist invokes a command to calculate and store the counting sum-

mary for this Data Function. Note that in this example, we selected inherited attributes

from the abstract Class Merchandise Item as DETs.

3.5.2 Counting Transactional Functions

In order to support Transactional Functions counting, the same strategy presented in

the previous section was used. The FP counting specialist maps the use case scena-

rios, modeled as activities, to Transactional Functions. Often, each scenario is mapped

to one Transactional Function, but this is not mandatory, since this depends on model-

ing choices. Therefore, its full automation would be quite hard, as it happens with the

mapping of Data Functions.

The abstract stereotype «eventFlow» was created to represent all types of scena-

rios. Fig. 7 shows that it is specialized by the three stereotypes that represent different

scenarios.

We do not present them here with the same level of details as in the previous sec-

tion, since the rationale is essentially the same. We simply emphasize the differences

regarding the counting of FTRs (File Types Referenced, as opposed to RETs in Data

Functions) and DETs.

Fig. 7 - Stereotypes for counting Transactional Functions.

With the aim of selecting the list of Data Functions considered as FTRs in a Trans-

actional Function, the RSA plug-in offers to the specialist a list of all classes defined

as Data Functions, and whose instances participate in the collaboration that realizes

the use case. For instance, if the specialist defines the main flow of the use case Man-

age Suppliers as an External Inquiry (EQ), the plug-in will list Purchase Order and

Merchandise as candidates to FTR.

In order to count DETs, the RSA plug-in shows a list of all attributes from boun-

dary classes (those that represent user interfaces) and whose instances participate in

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 12

the collaboration that realizes the use case. Additional DETs, not explicitly derived

from UI fields (such as messages and commands), could be manually added to the

selected DETs.

Another difference between Data and Transactional Function counts, in our tool, is

the ability to copy data from one Transactional Function to another. This is very use-

ful since many Transactional Functions share the same FTR and DET information; for

instance, record insert and update, which are both EQ (External Inquiry) type func-

tions.

3.6 Profile Constraints

After analyzing the inspections conference lists, we observed that most of the items

could be automatically verified. In order to enable this verification, we introduced

OCL [11] constraints into our stereotypes. This allows checking the completeness and

correctness of our UML models.

Requirement engineers can execute the validation procedures implemented as OCL

constraints after finishing the concrete user-application interactions modeling. Viola-

tions are marked as model errors, which are required to be fixed before reviews. The

procedure is embedded as a plug-in in the RSA modeling tool.

3.7 Other RSA plug-in Automation Functions

Our RSA plug-in provides more automation functions than those described in this

article. A short list of other functions includes:

• Automatic generation of a requirements specification document, often demanded

by clients as contractual basis. This automatic procedure extracts UML model data

into a PDF or MS Word document, including all diagrams, elements and their ste-

reotype tagged values;

• An Eclipse View to help filling stereotypes tagged values in RSA;

• An enhanced refactoring support, used to change references from one UML ele-

ment to another;

• A Listener to model changes that helps to prevent model inconsistencies, checking

Constraints online instead of in batch mode.

4 Preliminary Results

In this section we present some benefits that resulted from using the RSA plug-in in

our projects.

The automated features of the RSA plug-in were first used in a small requirements

specification project (826 Function Points), referred here as New Project. We com-

pared the effort needed to write the specifications and to count Function Points of two

similar projects, using the same process version and teams with same maturity. Table

presents the results. The total requirements modeling effort measures the work in

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 13

activities that directly produce the requirements specification. Activities like man-

agement and training were excluded, but reviews and rework efforts were included.

Although there is a difference between these two projects in size, the data seem to

indicate that automated prototype generation indeed increases productivity (almost

twice the productivity) and reduces rework. Requirements engineers that participated

in both projects confirmed this impression.

Table 1 - PRODUCTIVITY COMPARISON BETWEEN MANUAL AND AUTOMATED

TASKS WITH RSA PLUG-IN

Project

use

cases

FP

counted

FP

counting

Effort (h)

Produc-

tivity

(FP

Counted/h)

Re-

quirements

Effort(h)

Require-

ments model-

ing Produc-

tivity (PF/h)

Old Project 128 2586 6727.32 18.10 258.23 0.38

New Project 31 882 1441.83 37.63 23.44 0.61

Regarding FP counting, RSA plug-in also indicated an increase in productivity:

from 18,10 PF/h to 37.63 PF/h. In the New Project, each Requirement Engineer was

responsible for counting both Data Functions and Transactional Functions of each use

case that he/she specified. The counting was carried out during use case specification.

In this way, it was possible to monitor the product size in ‘real time’, during elicita-

tion, and negotiate changes with the client if needed, since the customer had a prede-

fined target for scope size. This target matched the budget constraint, since the cus-

tomer was willing to trade functions according to their priority, provided that the total

cost was kept below a preset limit.

The quality of the FP counting was verified twice. First, each use case FP size was

verified during the requirement reviews, by a different Requirement Engineer. In

addition, after the conclusion of the specification, an IFPUG-certified specialist re-

viewed again all the counting data. This procedure was executed to avoid counting

inconsistencies.

Unlike development projects, we expected that specification projects would show

an economy of scale, since smaller projects tend to have a larger overhead in activities

such as start-up and closure. Despite the reduced number of New Project use cases,

we observed a substantial productivity increase (167%).

Other important results were achieved while executing the review process. First, a

certified specialist reviewed the estimation and detected a small deviation error (less

than 2% in total FP count). This reduced error seems to result from the automated

verification carried out by the OCL constraints. In addition, the whole review process

had a productivity of 54.61 PF/h.

Currently, all projects at Synergia use stereotype constraints. Unfortunately we

were not able to compare them with older projects, since they also differ in many

other aspects. Nevertheless, we interviewed the Requirement Engineers, and they

confirmed that automated model validation, provided by OCL constraints, significant-

ly helps them to keep model integrity and consistency.

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 14

So far, we have not validated the UML reuse framework and interaction wizard in

a development project. We presented these facilities to the development team and

they are very optimistic about their adoption. We also made some informal experi-

ments, asking engineers to model a CRUD interaction using the framework and the

wizard tool, after an informal training. We observed that they finished the modeling

task with a better productivity when we comparing to previous trainings.

5 Related Work

A number of researchers discussed the use of specifics tools and frameworks to

support the software development process. Cheng and Campbell[12] present a frame-

work for formalizing a subset of UML diagrams, enabling their analysis. Examples of

tools that check requirements consistency using semi-formal specifications are

BVUML [13], CDET [14] and VIEWINTEGRA [15]. These tools verify the consis-

tency between user requirements specifications and class diagrams, or between such

specifications and sequence diagrams. In contrast, our approach defines constraints

bound to stereotypes which provide a quick way to enforce very simple rules man-

dated by process standards. Since the constraints to be checked are not complex, a

simple OCL implementation was required without any further formalism.

Some research projects have been suggested for generating user interfaces from

specifications of the application domain. Usually, entity-relationship models serve as

input for the selection of interaction objects according to rules based on style guide-

lines such as Common User Access [16].Genius [17] and Janus [18]are two examples

of research projects that present this user interfaces generation procedure. Other ap-

proaches[19], [20] use scenarios as an input for the user interface prototype genera-

tion. In these approaches, an intermediary representation or additional information is

needed to the prototype generation, such as a graph or user interface information. In

our methodology, the focus is on the prototype generation from the UML class mod-

els. It does not require any model transformation or inclusion of additional descrip-

tions (using other formalisms) in the models to allow this process. This translation is

carried out directly from the results produced by the analysts, which can be consumed

by all the stakeholders, including our clients.

Similarly to our explicit mapping for requirement models during the FP counting,

other works also propose rules for mapping OO models to FPA models. Harput et al.

[21] propose a semiautomatic model transformation from OO requirements models to

FPA models, based on heuristic rules to be applied by an FPA expert. Uemura et al.

[22] describe a system for automatically counting FP from a requirement/design spe-

cification based on UML diagrams. Caldiera et al. [23] propose an adaptation of tradi-

tional function points, called Object Oriented Function Points (OOPF), to allow the

measurement of object oriented analysis and design specifications. In our solution, it

was not our purpose trying to fully automate the FP measurement. A fully automatic

tool does not seem to be feasible, mainly because FP counting requires some human

judgment [21]. Coherently with FP concepts, we focus on the users’ view of the sys-

tem, and in estimating size early in the software development life cycle.

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 15

6 Conclusions and Future Work

In this paper we presented some problems faced by Synergia, regarding Requirements

Engineering activities. We proposed a set of tools to automate some of these activities

and UML extension mechanisms to improve the development project.

Although, so far, we do not have research-level data to support the claims of in-

creased productivity and quality of the UML requirements modeling, we collected

feedback from the requirements engineers. The engineers were very satisfied with the

improvements brought by the RSA plug-in. They identified other positive points, such

as significant reduction of manual work and increase in defect detection.

The proposed facilities were carried out for one specific proprietary tool, the IBM

Rational Architect. Three main reasons why we have chosen IBM are: (i) it has a

quite complete coverage of UML 2; (ii) it has a powerful extensibility facilities, and

(iii) it is freely available to academic institutions. The developed environment should

be portable to other tools that support full UML 2 in the Eclipse platform, since we

used strict UML 2 concepts, without tool-specific notation extensions.

As future work, we plan to invest in model transformations to generate complete

Java code for framework interactions, as well as its automated tests and test specifica-

tions.

References

1. S. S. Rachida, R. Dssouli, and J. Vaucher, “Toward an Automation of Requirements Engi-

neering using Scenarios,” vol. 2. Journal of Computing and Information, pp. 1110-1132,

1996.

2. T. Hall, S. Beecham, and A. Rainer, “Requirements problems in twelve software compa-

nies: an empirical analysis,” IEE Proceedings - Software, vol. 149, no. 5, p. 153, 2002.

3. Boehm, B.; and Hoh In, "Identifying quality-requirement conflicts," IEEE Software,

vol.13, no.2, pp.25-35, Mar 1996.

4. Glass, R. L. Facts and Fallacies of Software Engineering. Addison-Wesley, 2003.

5. B. Pimentel, W. P. P. Filho, C. Pádua, and F. T. Machado, “Synergia: a software engineer-

ing laboratory to bridge the gap between university and industry,” International Confe-

rence on Software Engineering, 2006.

6. W. Pádua. A Software Process for Time-constrained Course Projects. In: Proceedings of

the 28th. International Conference on Software Engineering, pp. 707-710. Shanghai, Chi-

na, Maio 2006

7. V. A. Batista, D. C. C. Peixoto, E. P. Borges, W. Pádua, R. F. Resende, and C. I. P. S.

Pádua, “ReMoFP: A Tool for Counting Function Points from UML Requirement Models,”

Advances in Software Engineering, vol. 2011, pp. 1-7, Jan. 2011.

8. P. Kruchten, The Rational Unified Process: An Introduction, Addison-Wesley, Reading,

Mass, USA, 3rd edition, 2003.

9. IEEE, “IEEE recommended practice for software requirements specifications,” Tech. Rep.

IEEE Std 830-1998, 1998.

10. Vitor A. Batista, Daniela C. C. Peixoto, Eduardo P. Borges, Wilson Pádua, Rodolfo F. Re-

sende, and Clarindo Isaías P. S. Pádua. ReMoFP: A Tool for Counting Function Points

from UML Requirement Models. Advances in Software Engineering, vol. 2011, 2011.

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 16

11. OMG, Object Constraint Language 2.0 Specification, Object Management Group (OMG),

2005.

12. B. H. C. Cheng and L. A. Campbell, “Integrating informal and formal approaches to re-

quirements modeling and analysis,” in Proceedings Fifth IEEE International Symposium

on Requirements Engineering, pp. 294-295.

13. B. Litvak, S. Tyszberowicz, and A. Yehudai, “Behavioral consistency validation of UML

diagrams,” in First International Conference on Software Engineering and Formal Me-

thods, 2003.Proceedings., pp. 118-125.

14. J. Scheffczyk, U. M. Borghoff, A. Birk, and J. Siedersleben, “Pragmatic consistency man-

agement in industrial requirements specifications,” in Third IEEE International Conference

on Software Engineering and Formal Methods (SEFM’05), 2005, pp. 272-281.

15. A. Egyed, “Scalable consistency checking between diagrams - the VIEWINTEGRA ap-

proach,” in Proceedings 16th Annual International Conference on Automated Software

Engineering (ASE 2001), pp. 387-390.

16. IBM. 1991. Systems Application Architecture: Common User Access—Guide to User In-

terface Design— Advanced Interface Design Reference. IBM.

17. C. Janssen, A. Weisbecker, and J. Ziegler, “Generating user interfaces from data models

and dialogue net specifications,” in Proceedings of the SIGCHI conference on Human fac-

tors in computing systems - CHI ’93, 1993, pp. 418-423.

18. H. Balzert, “From OOA to GUIs: The Janus system,” JOOP, vol. 8, pp. 43-47, 1996.

19. J. Shirogane and Y. Fukazawa, “GUI prototype generation by merging use cases,” in Pro-

ceedings of the 7th international conference on Intelligent user interfaces - IUI ’02, 2002,

p. 222.

20. M. Elkoutbi, I. Khriss, and R. K. Keller, “Automated Prototyping of User Interfaces Based

on UML Scenarios,” Automated Software Engineering, vol. 13, no. 1, pp. 5-40, Jan. 2006.

21. V. Harput, H. Kaindl, and S. Kramer, “Extending function point analysis to object-oriented

requirements specifications,” in Proceedings of the 11th IEEE International Software Me-

trics Symposium (METRICS '05), pp. 361–370.

22. T. Uemura, S. Kusumoto, and K. Inoue, “Function point measurement tool for UML de-

sign specification,” in Proceedings of the 6th International Software Metrics Symposium,

pp. 62–69, November 1999.

23. G. Caldiera, G. Antoniol, R. Fiutem, and C. Lokan, “Definition and experimental evalua-

tion of function points for object-oriented systems,” in Proceedings of the 5th International

Software Metrics Symposium, pp. 167–178, November 1998.

V. Batista et al., A UML Reuse Framework and Tool for Requirements Engineering, EJS 12 (1) 3-17 (2013) 17

