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Abstract

Let k be a field of characteristic zero. We present a fast algorithm for
multiplying multivariate power series over k truncated in total degree. Up
to logarithmic factors, its complexity is optimal, i.e. linear in the number
of coefficients of the series.
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1 Introduction

Let k be a field of characteristic zero. We denote by S the multivariate power
series ring in n variables k[[x1, . . . , xn]] and by m its maximal ideal (x1, . . . , xn).
For any positive integer d we write deg(md+1) for the degree of the ideal md+1,
that is, the number of monomials in S which are not in md+1. It is well-known
that

deg(md+1) =
(

d + n

n

)
.

We view a power series f in S at precision md+1 as a vector in the k-algebra
S/md+1. This algebra has dimension deg(md+1).

In this article we give an asymptotically fast algorithm for multiplying
two power series at precision md+1: the cost of one multiplication is linear in
deg(md+1) up to logarithmic factors. As for many other algorithms dedicated
to fast multiplication, our method relies on multi-point evaluation and interpo-
lation: this brings back the problem to multiplication in k[t] modulo td+1, for
which fast algorithms are known.

Previous work. To the best of our knowledge, this is the first time that the
question of a fast multiplication algorithm is addressed in this context. Apart
from the naive algorithm, with complexity quadratic in deg(md+1), the best
algorithm known up to now is hinted at by [3]: it relies on Kronecker’s substitu-
tion [14]. This method requires to compute modulo (xd+1

1 , . . . , xd+1
n ) instead of

md+1 and amounts to multiplying two univariate polynomials in degree (2d)n.

Using fast univariate multiplication algorithms (see below), the complexity
of this approach is linear in the degree (2d)n, up to logarithmic factors. On the
other hand, the number of coefficients of a series at precision md+1 is the com-
binatorial number

(
d+n

n

)
, and the quantity (2d)n is not polynomially bounded

in terms of
(
d+n

n

)
. For fixed n,

(
d+n

n

)
grows like dn

n! as a function of d; thus the
overhead of the approach through Kronecker’s substitution has order c2nn!, for
some positive constant c.

Model of Computation. All along this paper, our model of computation is
the arithmetic circuit over k, with operations (+,×). The size of an arithmetic
circuit is the number of its internal nodes, see [4] (Chapter 4) for a detailed
definition. All polynomials and all elements of S/md+1 are represented by the
vector of their coefficients in the canonical monomial basis.

Main result. With these conventions, our main result is the following theorem:

Theorem 1 Let n, d be integers, and let D denote deg(md+1). There exists
an arithmetic circuit which, taking as input two elements f and g of S/md+1,
outputs their product fg, and has size

O
(
D log(D)3 log(log(D))

)
.



G. Lecerf and É. Schost, Power Series Multiplication, EJS, 5(1) 1–10 (2003) 3

Our result is closely related to the algorithms for sparse [1, 23] or dense [5]
multivariate polynomial multiplication, which achieve a linear complexity (up to
logarithmic factors) in the number of monomials in the output. All these results
rely on a fast multi-point evaluation and interpolation scheme for multivariate
polynomials, for a specific choice of sample points, namely powers of prime
numbers. This idea was introduced by [11] and [22]. We recall this fundamental
result in Lemma 1, following the presentation of [5].

Applications. Operations modulo a power of the maximal ideal in a power
series ring appear frequently in relation to Newton-Hensel lifting techniques.
A classical example is the factorization of multivariate polynomials. Our own
initial interest comes from the field of polynomial system solving, where such
lifting techniques are used as well. We refer to Section 3 for more details.

2 Proof of the main result

We first introduce some notation. In the following, C (resp. D) denotes the
number of monomials in n− 1 (resp. n) variables of degree at most d:

C :=
(

d + n− 1
n− 1

)
, D :=

(
d + n

n

)
.

The log function is the Neperian logarithm (log(e) = 1).

Our proof is divided into three lemmas, the first of which is taken from [5].
Its result is stated in terms of the functionMu(δ), which denotes the complexity
of the multiplication of two univariate polynomials of degree δ in k[t]. Schönhage
and Strassen [20, 19] proved that Mu(δ) belongs to O(δ log(δ) log(log(δ))).

Lemma 1 [5] Let d, n be integers, and p2, . . . , pn distinct prime numbers. For
i ∈ {0, . . . , C − 1}, denote by Pi the point (pi

2, . . . , p
i
n) ∈ kn−1. There exist

arithmetic circuits Ev and Int of sizes O(Mu(C) log(C)) such that,

• Multi-point evaluation: on input a polynomial f in k[x2, . . . , xn] of
degree at most d, Ev computes the values f(P0), . . . , f(PC−1);

• Interpolation: on input a0, . . . , aC−1, Int computes the polynomial f in
k[x2, . . . , xn] of degree at most d such that f(Pi) = ai for i ∈ {0, . . . , C−1}.

Proof. Let M1, . . . ,MC be all monomials in k[x2, . . . , xn] of degree at most
d, and v1, . . . , vC their values at P1, that is, with xj evaluated at pj for j ∈
{2, . . . , n}. Let next M be the C × C matrix over k,

M =


1 1 · · · 1
v1 v2 · · · vC

v2
1 v2

2 · · · v2
C

...
...

...
vC−1
1 vC−1

2 · · · vC−1
C

 .
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Then evaluating a polynomial f ∈ k[x2, . . . , xn] of degree at most d on the points
P0, . . . , PC−1 is done by multiplying M by the column vector of the coefficients
of f . Similarly, interpolating the coefficients of a polynomial f ∈ k[x2, . . . , xn]
of degree at most d from its values at P0, . . . , PC−1 is done by multiplying the
column vector made of these values by the inverse of M .

Let us consider the matrix N = M t, the transpose of M . The matrix N is
the Vandermonde matrix associated to the points v1, . . . , vC . Thus, there exist
arithmetic circuits of sizes O(Mu(C) log(C)) that perform the multiplication of
a column vector by N (resp. by its inverse): these come from fast univariate
evaluation and interpolation algorithms, see [4].

The conclusion follows from Tellegen’s transposition principle [18]: since
there exist arithmetic circuits of sizes O(Mu(C) log(C)) for performing the
product by M t (resp. by its inverse), there exist arithmetic circuits of the
same size that perform the product by M (resp. by its inverse). �

On the basis of this result, the following lemma gives a first upper bound
on the complexity of multivariate power series multiplication, stated in terms
of the function Mu. In a second stage, we will show that Schönhage-Strassen’s
multiplication scheme yields the claim of Theorem 1.

Lemma 2 Let n, d be integers. There exists an arithmetic circuit which, taking
as input two elements f and g of S/md+1, outputs their product fg, and has
size

O
(
dMu(C) log(C) +Mu(d)C

)
,

where C is the number of monomials of degree at most d in n − 1 variables as
defined above.

Proof. Let f, g be two elements of S/md+1, h their product and f, g, h the
canonical preimages of f, g, h in k[x1, . . . , xn]. It is enough to compute h to
conclude.

Let t be a new variable. We define polynomials F,G, H ∈ k[x1, . . . , xn][t] by

F := f(x1t, x2t, . . . , xnt), G := g(x1t, x2t, . . . , xnt), H := h(x1t, x2t, . . . , xnt).

The polynomials F , G and H satisfy the equality H = FG mod td+1. The
polynomial h can be recovered from H by evaluation at t = 1, so we now focus
on a fast way to compute H.

The polynomials F , G and H can be written

F = f0 + f1t + · · ·+ fdt
d,

G = g0 + g1t + · · ·+ gdt
d,

H = h0 + h1t + · · ·+ hdt
d,

where for all i, fi, gi and hi belong to k[x1, . . . , xn] and are homogeneous of
degree i. We will work with their de-homogenized counterparts, by introducing
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the polynomials F ,G, H ∈ k[x2, . . . , xn][t] obtained by letting x1 = 1 in F,G, H.
Of course, it is enough to compute H, since we can obtain H from it without
additional cost by suitably homogenizing all its coefficients.

Just as above, the polynomials F , G and H can be written

F = f0 + f1t + · · ·+ fdt
d,

G = g0 + g1t + · · ·+ gdt
d,

H = h0 + h1t + · · ·+ hdt
d,

where for all i, f i, gi and hi ∈ k[x2, . . . , xn] are obtained by evaluating fi, gi

and hi at x1 = 1, and thus have degree at most i.

Following Lemma 1, we now take Pi = (pi
2, . . . , p

i
n), for distinct prime num-

bers p2, . . . , pn. For any Pi, we write FPi for the polynomial f0(Pi)+ f1(Pi)t+
· · · + fd(Pi)td in k[t]. We similarly define GPi

and HPi
, so that the equal-

ity HPi
= FPi

GPi
mod td+1 holds. This leads to the following evaluation-

interpolation scheme.

Algorithm. Given f and g in S/md+1, to compute h = fg in S/md+1. Let
F ,G, H be as above.

1. Compute FPi
, GPi

for C points P0, . . . , PC−1, with Pi ∈ kn−1 for all i.

2. Compute the C products HPi = FPiGPi mod td+1 in k[t].

3. Interpolate the polynomials h0, . . . , hd ∈ k[x2, . . . , xn]

4. For i = 0, . . . , d, homogeneize hi in degree i using the variable x1, and call
hi the result. Let H = h0 + h1t + · · · + hdt

d and h = H(1). Then h = h
mod md+1.

Complexity analysis. Step 4 has no arithmetic complexity, we examine the
cost of steps 1, 2 and 3.

• By Lemma 1, there exists an arithmetic circuit of size O(dMu(C) log(C))
which, on input f and g, computes the values

f j(P0), . . . , f j(PC−1) and gj(P0), . . . , gj(PC−1).

for j in {0, . . . , d}. This gives the complexity of step 1.

• For i ∈ {0, . . . , C − 1}, HPi
is obtained by an univariate series product in

k[t], which can be done within O(Mu(d)) arithmetic operations. Step 2
then requires O(Mu(d)C) arithmetic operations.

• Using the second result given in Lemma 1, the interpolation of all hj can
be done by an arithmetic circuit of size O(dMu(C) log(C)). This accounts
for step 3. �
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The result of Lemma 2 is given in terms of the number of monomials C,
whereas our objective is a bound in terms of the quantity D. The last lemma
answers this question.

Lemma 3 For all d ≥ 0, n ≥ 1, the following inequality holds:

dC

D
=

nd

n + d
≤ log(D).

Proof. The first equality is obvious. To prove the inequality, note first that the
inequality d

1+d ≤ log(1 + d) holds for all d ≥ 0. Indeed, let f(d) = d
1+d and

g(d) = log(1 + d), then f ′(d) = 1
(1+d)2 , g′(d) = 1

1+d , so f ′(d) ≤ g′(d) holds for
d ≥ 0. Since f(0) = g(0) = 0, the assertion follows.

Now we rewrite D as (n+1)···(n+d)
d! . Then we fix d and introduce the functions

u : n 7→ nd
n+d and v : n 7→ log (n+1)···(n+d)

d! , so we have to prove that u(n) ≤ v(n)
for n ≥ 1. For n = 1, the inequality to prove reads as d

1+d ≤ log(1+d), which was
proved above. We conclude the proof by proving the inequality u′(n) ≤ v′(n)
for n ≥ 1. The derivatives of u and v are

u′(n) =
d2

(n + d)2
, v′(n) =

d∑
i=1

1
n + i

.

The conclusion immediately follows from the inequalities

d∑
i=1

1
n + i

≥
d∑

i=1

1
n + d

=
d

n + d
≥ d2

(n + d)2
.

�

We are now ready to prove Theorem 1. We first replace Mu(C) by the esti-
mate O(C log(C) log(log(C))) in the complexity of Lemma 2. Then, according
to the above lemma we bound C by D log(D)/d. This yields a complexity in:

O

(
D log(D)

(
log(D) + log(log(D))

)2

log
(

log(D) + log(log(D))
)

+D log(D) log(d) log(log(d))

)
.

As for the second term we use d ≤ D, therefore:

dMu(C) log(C) +Mu(d)C ∈ O(D log(D)3 log(log(D))).

This concludes the proof of Theorem 1.



G. Lecerf and É. Schost, Power Series Multiplication, EJS, 5(1) 1–10 (2003) 7

3 Applications

As mentioned in the introduction, lifting techniques often require to compute
modulo a power of the maximal ideal in a power series ring. A first and clas-
sical example is multivariate polynomial factorization through Newton-Hensel
techniques. We refer to Chapter 15 in [6] for a presentation.

Our interest for power series multiplication originates from the field of poly-
nomial system solving. In the second author’s PhD thesis [21], the situation is as
follows. We consider some polynomials f1, . . . , fm in k(x1, . . . , xn)[y1, . . . , ym],
and want to solve the system f1 = · · · = fm = 0. The variables xi play the
role of parameters and we are looking for formulas expressing the solutions yi

in terms of these parameters.

Let us assume that the system is zero dimensional in the algebraic closure of
k(x1, . . . , xn). Then, we will represent its solutions by a family of polynomials
Q,V1, . . . , Vm in k(x1, . . . , xn)[T ], such that fi(V1, . . . , Vm) = 0 modulo Q, for
i ∈ {1, . . . ,m}. The techniques we now describe are inspired by previous work
of Giusti, Heintz, Pardo and collaborators in [9, 7, 8, 12].

To compute Q, V1, . . . , Vm, we proceed the following way:

1. We pick up a point (p1, . . . , pn) at random in kn, we substitute the vari-
ables xi by pi in the system and solve this specialized system. If (p1, . . . , pn)
is generic enough, the solutions of this system can be represented by the
polynomials Q,V1, . . . , Vm with all coefficients specialized at (p1, . . . , pn).
Up to a change of variables, we assume that (p1, . . . , pn) = (0, . . . , 0), and
let m be the maximal ideal of k[[x1, . . . , xn]].

2. We lift the dependency of the solutions in the parameters in the formal
power series ring k[[x1, . . . , xn]], using a formal version of Newton’s itera-
tor, as proposed by [10] and [15, 16]. The k-th lifting step takes as input
the polynomials Q,V1, . . . , Vm with coefficients reduced modulo m2κ

and
outputs these polynomials with coefficients reduced modulo m2κ+1

.

3. Once we have reached a sufficient precision we recover the coefficients of
Q,V1, . . . , Vm thanks to a multivariate version of Padé’s approximants.

The lifting is the bottleneck of this method. Indeed, denoting the input of the
k-th lifting step by Q(κ), V

(κ)
1 , . . . , V

(κ)
m , the lifting requires the evaluation of

fi

(
V

(κ)
1 , . . . , V

(κ)
m

)
modulo Q(κ), for i ∈ {1, . . . ,m}. This is where we really

need fast multivariate power series multiplication.

In a similar spirit, multiplication routines modulo deg(md+1) are useful to
treat systems of partial differential equations: roughly speaking, once a charac-
teristic set of the system is known, the Taylor series expansions of non-singular
solutions can be computed by successive approximations, which require arith-
metic operations on power series. This idea is presented for instance by [2]
and [17].
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4 Conclusion

Van der Hoeven [13] generalized our algorithm to the case when

I = (xd1
1 · · ·xdn

n | α1d1 + · · ·+ αndn > d),

where the αi and d are positive integers. However, the problem of fast com-
putation with multivariate power series modulo any m-primary monomial ideal
I (with dense representation and using the canonical monomial basis) is not
answered yet. For instance, such computations are motivated by the deflation
algorithm presented in [16], which generalizes Newton’s operator for isolated
multiple roots. A first question in this direction is the cost of the multiplication
modulo the ideal (xd+1

1 , . . . , xd+1
n ). In this situation, our algorithm requires pre-

cision mnd+1, this yields a complexity in O((ed)n), up to logarithmic factors.
We do not improve the best complexity result, which is in O(Mu(2d)n) using
Kronecker’s substitution.

Also, our result is stated in terms of arithmetic complexity. It is not imme-
diate to design an efficient implementation of this algorithm. For instance, if
the base field is the rational field Q, we do not know the bit complexity and we
would certainly want to use multi-modular and Chinese remainder techniques
in order to avoid the growth of the integers in the intermediate computations;
this would require to extend our result to finite fields.

This naturally opens the more general question of fast computation with
multivariate power series over any ring. The point is to extend Lemma 1: the
main difficulty is to choose points in the base ring such that distinct monomials
take distinct values on these points. A first result in this direction, based on
combinatorial arguments, is given by [23].
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