
SADIO Electronic Journal of Informatics and
Operations Research

http://www.dc.uba.ar/sadio/ejs/

vol. 6, no. 1, pp. 1-11 (2004)

U-transfer schemes and dynamical
systems in n-person TU-games

Juan Carlos Cesco Ana Lucía Calí

Instituto de Matemática Aplicada San Luis (CONICET-U.N.San Luis)
(jcesco@unsl.edu.ar)

Departamento de Matemática (U.N.San Luis)
Chacabuco y Pedernera, 5700 San Luis, Argentina

(acali@unsl.edu.ar)

Abstract

In this paper we define a non-continuous discrete dynamical system re-
lated to a transfer scheme designed originally to approximate imputations
in the core of balanced games. We show that the dynamical system may
have either periodic point of period 1 (fixed points) or periodic points with
period greater than one, but not both. Moreover, the fixed points of the
dynamical system characterize the core of a balanced game. On the other
side, periodic points of period greater than one are associated with certain
class of cycles of pre-imputations that can appear in non-balanced games
(maximal U-cycles). For monotonic non-balanced 3-person games we de-
scribe completely the set of periodic points and their associated (forward)
stable sets.
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1 Introduction.

In a recent paper (Cesco (2003)) a characterization of non-balanced games in
terms of the existence of certain cycles of pre-imputations (fundamental cycles)
has been proved. Later it was shown that, for some class of TU -games (games
with transferable utilities), the characterization theorem can still be obtained us-
ing narrow classes of cycles, U -cycles and maximal U -cycles (Cesco, Calí (2003)).
The latter has the advantage of being a class of computable cycles using an al-
gorithm developed to reach points in the core of a balanced TU -game (Cesco
(1998)). Along with this algorithm we associate a discrete dynamical system.
The aim of this paper is to study the set of periodic points of this dynamical sys-
tem and some properties of their associated stable sets. Concerning this issue,
we obtain a full characterization in the framework of monotonic non-balanced
3-person games. The main result of this paper concerning these games (theorem
6) indicates that every imputation is forward asymptotic (section 2). This fact
has important consequences from a computational point of view. On one hand,
it allows us to give a precise notion of global convergence of the imputations
generated by the algorithm developed in Cesco (1998) to maximal U -cycles. On
the other, the positive results obtained here encourage us and provide some
insight to deal with more general classes of games.
The paper is organized as follows. Preliminaries and some notation are

set forth in the next section. In section 3 we define cycles of pre-imputation
and close it showing that the existence of a U -cycles or maximal U -cycles in
a TU -game implies the non-balancedness of it (theorem 1) for a sub-class of
n-person games which generalizes 3-person games. We close this section with
some concepts related to dynamic systems. There we prove that the dynamical
system defined in this note may have either fixed points or periodic points of
period greater than one, but not both. In the last section we study the case of
non-balanced monotonic 3-person games. In this framework we characterize the
stable set of imputations associated with periodic imputations of period greater
than one.

2 Preliminaries.
A TU -game is a pair (N, v) where N = {1, 2, ..., n} represents the set of players
and v the characteristic function. We assume that v is a real valued function
defined on the family of subsets of N,P(N) satisfying v(N) = 1 and v({i}) = 0
for each i ∈ N . The elements in P(N) are called coalitions. The game is called
monotonic if v(S) ≥ v(T ) whenever S ⊇ T.
The set of pre-imputations is defined by E = {x = (x1, . . . , xn) ∈ Rn :P
i∈N xi = 1} and the set of imputations by A = {x ∈ E : xi ≥ 0 for all i ∈ N}.
Given a coalition S∈P(N) and a pre-imputation x, the excess of the coalition

S with respect to x is defined by e(S, x) = v(S)−x(S), where x(S) =Pi∈S xi if
S 6=Φ and 0 otherwise. The excess of a coalition S represents the aggregate gain
(or loss, if negative) to its members if they depart from an agreement that yields
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x in order to form their own coalition. The core of a game (N, v) is defined by
C = {x ∈ E : e(S, x) ≤ 0 for all S ∈ P (N)}.
The core of a game may be an empty set. The Shapley-Bondareva’s theorem

(Bondareva (1963), Shapley (1968)) characterizes the sub class of TU -games
with non-empty core. A central role is played by balanced families of coalitions.
A family of non-empty coalitions B ⊆ P(N) is called a balanced if there exists
a set of positive real numbers (λS)S∈B satisfying

X
S∈B
S3i

λS = 1, for all i ∈ N . The

numbers (λS)S∈B are called the balancing weights for B. B is minimal balanced
if there is no proper balanced subfamily of it. In this case, the set of balanced
weights is unique. Equivalently, if χS ∈ Rn denotes the characteristic vector
defined by (χS)i = 1 if i ∈ S and 0 if i ∈ N\S, the family B is balanced if there
exists a family of positive balancing weights (λS)S∈B, such thatX

S∈B
λS .χS = χN

(Cesco (2003)). A well-known result establishes thatX
S∈B

λS .x (S) = x (N)

for all balanced family of coalitions. A game (N, v) is called balanced ifX
S∈B

λS .v(S) ≤ v(N) (1)

for all balanced family B with balancing weights (λS)S∈B. The Shapley- Bon-
dareva’s theorem states that a game (N, v) has non-empty core if and only if it

is balanced. An objectionable family is a balanced family not satisfying (1).

In what follows, the notion of U -transfer will play a central role. Given
x ∈ E and a proper coalition S, we say that y results from x by the U-transfer
from N\S to S (shortly, y is a U -transfer from x) if

y = x+ e(S, x).βS

Here βS =
χS
|S| −

χN\S
|N\S| if S is a proper coalition and the zero vector of R

n

otherwise. |S| indicates the number of players in S. The vector βS describes a
transfer of one unit of utility from the members of N\S to the members of S.
The U -transfer called maximal if e(S, x) ≥ e(T, x) for all T ∈ P(N).
>From now on, we will consider the coalitions in P(N) indexed somehow

from 0 to 2n − 1, with S0 = Φ and S2n−1 = N.
Given x ∈ E, let ϕ(x) = {i : e(Si, x) ≥ e(Sj , x) for all j = 0, ..., 2n − 1}. Let

g : E → E the function defined by

g(x) = x+ e(Si, x).βSi with i ∈ ϕ(x) and i ≤ j for all j ∈ ϕ(x) (2)
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The function g defines, by iteration, a discrete dynamical system.
Remark 1 The following example shows that, in general, g is not a continuous
function. Let (N, v) be a 3-person game with characteristic given by

v(N) = v({1, 2}) = v({1, 3}) = v({2, 3}) = 1
v(S) = 0 otherwise

Here we consider S1 = {1, 2}, S2 = {2, 3}, S3 = {1, 3}. Let x = (12 , 0, 12). Then,
ϕ(x) = {1, 2}, and

g(x) = x+ e(S1, x).βS1

= (
1

2
, 0,

1

2
) +

1

2
.(
1

2
,
1

2
,−1)

= (
3

4
,
1

4
, 0)

If ε is positive and small enough, and xε = ( 12+ε, 0, 12−ε), then ϕ(xε) = {2}
and g(xε) = (0, 14 +

1
2ε,

3
4 − 1

2ε) which is not close to g(x) for all ε close to zero.
For completeness, we list below some basic definitions from the theory of

dynamical systems. For further references we refer the reader to Devaney (1989).
Given a discrete dynamic system defined by a function g : X → X, the orbit

(forward orbit) of x ∈ X is the sequence of points x, g(x), g2(x), ... A point x is
called a fixed point for g if g(x) = x. A point x is a periodic point of period n if
gn(x) = x. The least positive n for which gn(x) = x is called the prime period
of x. The set of all periodic points of (not necessarily prime) period n will be
denoted by Pern(g), and the set of all fixed points by Fix(g). Given a periodic
point x, the set P = {y ∈ X : y = gk(x) for some k ≥ 1} is called a periodic
orbit. Sometimes we will use the use the notation P (x) to stress the fact that
the periodic orbit P is associated to the periodic point x.
Periodic point may exhibits some stability properties. Let x̄ be a periodic

point of period n. A point x is forward asymptotic to x̄ if lim
i→∞

gi.n(x) = x̄. The

stable set of x̄, denoted by W s(x̄), consists of all points forward asymptotic to
x̄.
The goal of dynamical systems is to understand the nature of all orbits.

Generally this is an impossible task. However, related to the dynamical system
defined by (2), we can give a complete description of its orbits whenever the
associated game is 3-person game.

3 Cycles of pre-imputations.
In this section we introduce two kind of cycles of pre-imputations and state,
without proof several, results proved in Cesco and Aguirre (2002), Cesco (2003).
Definition 1 A U−cycle c in a TU -game (N, v) is a finite sequence of pre-
imputations (xk)mk=1,m > 1, such that there exist associated sequences (Sk)mk=1
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of non-empty, proper coalitions of N (not necessarily all different) satisfying the
neighbouring transfer properties

xk+1 = xk + e(Sk, x
k).βSk for all k = 1, . . . ,m

and
xm+1 = x1

as well.
We refer to the numbers (e(Sk, xk))mk=1 as the transfer amounts.
Given a cycle c = (xk)mk=1, we denote the family (Sk)

m
k=1 by supp(c), and

by X(c) = {x ∈ E : x = xr for some pre-imputation xr in the cycle c}.
In Cesco (2003), theorem 1 we prove that supp(c)= (Sk)

m
k=1 is a balanced

family of coalitions. This result was stated for a more general class of cycles
(fundamental cycles) than U -cycles.
Remark 3 The existence of fundamental cycles in a TU -game is strongly related
to the non-existence of points in the core of the game. The results proved in
Cesco (2003) (theorems 3 and 9) allow us to state that a TU -game (N, v) is
balanced (i.e. with non-empty core) if and only if there do not exist fundamental
cycles in (N, v).
In Cesco, Calí (2003) we prove that, in some cases, the class of fundamental

cycles can be narrowed and still obtain a similar equivalence theorem. There
we state the following result.
Theorem 1 Let (N, v) be a TU -game with characteristic function given by

v(S1) = µn, v(Sk) = µk−1 for all k = 2, ..., n
v(N) = 1, and v(S) = 0 otherwise

Then the following statements are equivalent
(i) The game is balanced.
(ii) There does not exist a U -cycle in the game.
If the game is monotonic, then (i) is equivalent to
(iii) There does not exist a maximal U -cycle in the game.

Remark 4 The advantage of maximal U -cycles over fundamental cycles is that
the former are computable. In Cesco (1998) we introduced the notion of max-
imal transfer schemes in TU -games. A maximal transfer scheme is a sequence
(xk)∞k=1of pre-imputations such that x

k+1 is a maximal U -transfer from xk for
all k = 1, 2, ... There we proved that if a maximal transfer scheme converges, the
core of the game is non-empty (corollary 3.2). Besides, we implemented an algo-
rithm for computing maximal transfer schemes. When applied to non-balanced
games, it always ’converged’ to maximal U -cycles.

The following simple result provides some insight about periodic points.
Proposition 2 Let (N, v) be an n-person TU -game, and g a dynamical system
defined by (2). Then,
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i) if x is a periodic point of period k, k ≥ 2 then (x, g(x), ..., gk−1(x)) is a
maximal U -cycle.
ii) x is a fixed point for g if and only if x ∈ C.

Proof The proof of i) is straightforward. To prove ii),we first assume that x is
a fixed point for g. Then

x = x+ e(S, x).βS

for some S ∈ P(N) satisfying e(S, x) ≥ e(T, x) for all T ∈ P(N). Thus,
e(S, x).βS = 0. If S 6= Φ, N, βS 6= 0 and we conclude that e(S, x) = 0. But
the same is true if S = Φ or S = N. In any case we get that the maximum
excess with respect to x is 0, and this implies that x ∈ C. Conversely, if x ∈ C,
max

S∈P(N)
{e(S, x)} = 0. So g(x) = x for any dynamical system defined through

(2).
Because of this result and Theorem 3 in Cesco (2003) we have the following

Corollary 3 Let (N, v) be an n-person TU -game, and g a dynamical system
defined by (2). Then, g can have periodic points of period 1 (fixed points) or
periodic points of period k > 1, but not both. Moreover, if the game (N, v) is
balanced, C = Fix(g).
For general non-balanced games we do not know if there exist maximal U -

cycles. We have positive results for three person games (Cesco, Aguirre (2002)
and for a subclass of n-person games which behave quite similar to 3-person
games (Cesco, Calí (2003)).
In the next section we give a complete description of the periodic orbits in

non-balanced 3-person games.

4 3-person games
In this section we address to the characterization of the set of periodic imputa-
tions and their stable sets in the framework of 3-person games. The following
results were proved in Cesco, Aguirre (2002).
Lemma 4 Let G be 3-person game with the following characteristic function

v(N) = 1, v({1, 2}) = v({1, 3}) = v({2, 3}) = µ (3)

and v(S) = 0 otherwise. If µ > 2
3 , c = {x1, x2, x3} where

x1 = (
1

3
, 1− µ, µ− 1

3
), x2 = (µ− 1

3
,
1

3
, 1− µ), x3 = (1− µ, µ− 1

3
,
1

3
)

is a maximal U -cycle.
Remark 5 The condition µ > 2

3 is necessary and sufficient to guarantee the
non-balancedness of the game.
Lemma 5 Let G be 3-person game with the following characteristic function

v(N) = 1, v({1, 2}) = µ3, v({1, 3}) = µ2, v({2, 3}) = µ1 (4)

v(S) = 0 otherwise (5)
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Then c = {x1, x2, x3} where

x1 = (
1

3
+ t1, 1− µ+ t2, µ− 1

3
+ t3)

x2 = (µ− 1
3
+ t1,

1

3
+ t2, 1− µ+ t3)

x3 = (1− µ+ t1, µ− 1
3
+ t2,

1

3
+ t3)

Here
µ =

1

3
(µ1 + µ2 + µ3) (6)

and

t = (
1

2
(µ2 + µ3 − µ1)−

1

2
µ,

1

2
(µ1 + µ3 − µ2)−

1

2
µ,

1

2
(µ1 + µ2 − µ3)−

1

2
µ) (7)

is a maximal U -cycle provided B = {{1, 2}, {1, 3}, {2, 3}} is an objectionable
family.
Now we state a connection between cycles given in lemma 4 and lemma 5.

Definition 4 Let G = (N, v) a 3-person game with characteristic function given
by (4-5). We define the w-equivalence of G as the 3-person game G̃ defined by

ṽ(N) = 1, ṽ({1, 2}) = µ, ṽ({1, 3}) = µ, ṽ({2, 3}) = µ
ṽ(S) = 0 otherwise

with µ given by (6).

We point out that the w-equivalence left invariant the worth of the minimal
balanced family of B = {{1, 2}, {1, 3}, {2, 3}}.
Remark 6 Let G = (N, v) be a 3-person monotonic game with empty core. We
point out that its w-equivalence also has empty core. Moreover, if c̃ = {x̃1, x̃2, x̃3}
is the cycle given in lemma 4, then, there exists a vector t = tG = (t1, t2, t3)
such that c = c̃+ t is a cycle in G. In fact, the vector t is given by (7). For
an interpretation of the vector t, we refer the reader to Cesco, Aguirre (2002).
This implies that there exists a one to one correspondence between the maximal
U -cycles in the game with characteristic function given by (3) and the general
non-balanced 3-person game with characteristic function given by (4−5). More-
over, an appropriate dilatation/contraction transformation with respect to the
barycentre imputation ( 13 ,

1
3 ,

1
3) establishes a one to one correspondence between

the maximal U -cycles of any two games with characteristic function given by
(3) (Cesco, Calí (2003b, corollary 14)).
In what follows, we restrict ourselves to work with 3-person games whose

characteristic function is given by (3) with µ = 1. Because of remark 6, this will
no represent any loss of generality.



J.Cesco, A.Calí, U-transfer schemes , EJS, 6(1) 1-11 (2004) 8

Theorem 5 Let G = (N, v) be a game with characteristic function given by
(3) with µ = 1. Let c̃ = {x̃1, x̃2, x̃3} be the cycle

x̃1 = (
1

3
, 0,
2

3
), x̃2 = (

2

3
,
1

3
, 0), x̃3 = (0,

2

3
,
1

3
)

Then, if x1 = (x11, x
1
2, x

1
3) is an imputation satisfying x

1
3 > x

1
1 > x

1
2 = 0, then,

the maximal U -sequence {xi}i≥1 starting in x1 has the following properties:

a.−
max
S
e(S, x1+3i) = e({1, 2}, x1+3i) = x1+3i3

max
S
e(S, x2+3i) = e({2, 3}, x2+3i) = x2+3i1

max
S
e(S, x3+3i) = e({1, 3}, x3+3i) = x3+3i2

for all i ≥ 1.

b.−
lim
i
x1+3i = x̃1

lim
i
x2+3i = x̃2

lim
i
x3+3i = x̃3

Proof Under the hypothesis we have that e({1, 3}, x1) = 0. Let S1 = {1, 2}, S2 =
{2, 3}, S3 = {1, 3}. We first show that if a pre-imputation x 6= x̃i satisfies
e(Si, x) = 0 for some i = 1, 2, 3, then°°y − x̃i+1°°

2
<
°°x− x̃i°°

2

where y = x+ e(Si, x)βSi . Here the indexes i+1 are considered mod(3). It has
been proved that βS is orthogonal to the affine submanifold E(S) = {x ∈ E :
e(S, x) = 0} for all non trivial coalition S (Cesco (1998), lemma 2.2). Therefore,
since y, x̃i+1 are the orthogonal projections onto E(Si) of x, x̃i respectively, we
get that °°y − x̃i+1°°

2
≤ °°x− x̃i°°

2

Our claim follows by noting that ky − xk2 = e(Si, x)
°°βSi°°2 is different from

e(Si, x)
°°βSi°°2 = °°x̃i+1 − x̃i°°2 , so, the strict inequality must hold in the above

relation. Moreover, it holds that°°y − x̃i+1°°
2
= cos(

π

3
)
°°x− x̃i°°

2
(8)

Second, we point out that e(S1, x1) = 1−(x11+x12) = x13. Similarly, e(S2, x1) =
x11 and e(S3, x

1) = x12. So the maximum excess is reached at S1, and its value
is x13. Therefore, x

2 = x1 + x13.(
1
2 ,

1
2 ,−1). It is easy to show that x21 > x22 >

x23 = 0. A simple calculation indicates that the maximum excess for x2 is
reached at S2. With the same arguments already employed, we prove that
x3 = x2+x21.(−1, 12 , 12) satisfies x32 > x33 > x31 = 0, and that its maximum excess
is reached at S3. One more step indicates x1+3 satisfies x

1+3
3 > x1+31 > x1+32 = 0

which are the same conditions satisfied by x1. The validity of a.− is now ob-
tained by using an inductive argument.
To prove b.−, we take into account (8). Therefore°°x4 − x̃1°°

2
= cos(

π

3
)
°°x3 − x̃3°°

2
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= (cos(
π

3
))2
°°x2 − x̃2°°

2

= (cos(
π

3
))3
°°x1 − x̃1°°

2

This generalizes to °°x1+3i − x̃1°°
2
= (cos(

π

3
))3i

°°x1 − x̃1°°
2

for all i ≥ 1. Thus, we get that lim
i
x1+3i = x̃1. The other cases are proved

similarly.
We close the note with some remarks.

Remark 7 If the imputation x1 satisfies x11 > x13 > x12 = 0, then the convergence
is to the maximal U -cycle c̄ = {x̄1, x̄2, x̄3},where

x̄1 = (
2

3
, 0,
1

3
), x̄2 = (0,

1

3
,
2

3
), x̄3 = (

1

3
,
2

3
, 0)

Theorem 6 Let G = (N, v) be a game with characteristic function given by
(3) with µ = 1, and let g be the dynamical system defined by (2). Then,
W s(x̃1) ∩ A = {x ∈ A : x3 ≥ x1 ≥ x2}. Similarly, W s(x̄1) ∩ A = {x ∈ A : x1 >
x3 ≥ x2}.
Proof Let an imputation x = (x1, x2, x3) satisfy x3 ≥ x1 ≥ x2. Since

e(S1, x) = 1− (x1 + x2)
= x3

and similarly, e(S2, x) = x1, e(S3, x) = x2, we get that e(S1, x) ≥ e(S2, x) ≥
e(S3, x). Besides, e(S1, x) > e(S2, x) whenever x3 > x1. In any case, according
to the definition of g,

x2 = g(x)

= x+ e(S1, x).βS1

satisfies e(S1, x2) = 0. Similar calculations shows that x4 = g3(x) satisfies the
hypothesis of theorem 5. Therefore, the sequence x

1+3i

= g3i(x) converges to x̃1.
Thus, we have shown that W s(x̃1)∩A ⊇ {x ∈ A : x3 ≥ x1 ≥ x2}. We can use a
similar argument to show that an imputation x satisfying x1 > x3 ≥ x2 belongs
to W s(x̄1)∩A. Moreover, with the same technique and taking into account the
definition of g,we can prove that

W s(x̃2) ∩A ⊇ {x ∈ A : x1 ≥ x2 > x3}
W s(x̄3) ∩A ⊇ {x ∈ A : x2 > x1 > x3}
W s(x̃3) ∩A ⊇ {x ∈ A : x2 > x3 ≥ x1}
W s(x̄2) ∩A ⊇ {x ∈ A : x3 ≥ x2 > x1}

Since the sets on the right hand side of these inclusions form a partition of
A, we conclude that all the equalities must hold. This concludes our proof.
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We point out that the above result implies that the only periodic impu-
tations in the 3-person game studied here are those in the maximal U -cycles
c̃ and c̄. All of them have period 3. Because of remark 6 there are only six
periodic imputations in all monotonic non-balanced 3-person game G. Let
us call them x̃kG and x̄kG, k = 1, 2, 3. The stable sets associated with these
six periodic imputations can be obtained as follows. Let t = tG be the vec-
tor mentioned in Remark 6. Then W s(x̃kG) ∩ A = (W s(x̃k) + tG) ∩ A, and
W s(x̄kG) ∩A = (W s(x̄k) + tG) ∩A, k = 1, 2, 3.
It is interesting to add that the transformations mentioned in remark 6

provide indeed, a one to one correspondence between the maximal U -sequences
of a monotonic non-balanced game with characteristic function given by (4− 5)
and those of a game with characteristic function given by (3) with µ = 1.
Therefore, there exists a one to one correspondence between the orbits in a
general monotonic non-balanced 3-person game and those of the game studied
in theorem 6.

5 Conclusions
The main result presented in this paper provides a complete characterization
for the set of periodic points and its corresponding stable sets of monotonic
non-balanced 3-person games. However, the proof given here, which is based on
theorem 5, depends strongly on the number of players in the game. It would be
desirable to obtain similar characterization results for more general games. In
Cesco, Calí (2003b) we address to the case of n-person games in which the only
permissible coalitions are those of cardinality 1, n− 1 and n. These games are a
quite good generalization of the 3-person games studied in this note. Nothing
has been done regarding other classes of games.
On the other side, the imputations in a periodic orbit, and some coalitions

associated to them could be used to model some processes of coalition formation,
a central point in cooperative game theory. However, in general games, we do not
expect to get closed forms to describe the periodic orbits in the case they exist.
It is an open issue to characterize subsets of forward asymptotic imputations
without knowing, in advance, the periodic imputation to which they converge.
In this case, the algorithm developed in Cesco (1998) could be used to find out
periodic points. Some computational experience shows that many games are
globally stable in the sense that every imputation is forward asymptotic. This
numerical evidence and the results obtained in this note and in Cesco, Calí
(2003b) indicate that this line of work is worth to be explored further.
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